1. Interplay between the SAFE and the sphingolipid pathway for cardioprotection.
- Author
-
Cour M, Pedretti S, Nduhirabandi F, Hacking D, Frias MA, Hausenloy DJ, and Lecour S
- Abstract
Aim: Activation of both the Survivor Activating Factor Enhancement (SAFE) pathway (including Tumor Necrosis Factor-alpha (TNF-α) and Signal Transducer and Activator of Transcription-3 (STAT-3)) and the sphingolipid signalling pathway (including sphingosine kinase-1 (SK1) and sphingosine-1 phosphate (S1P)) play a key role in promoting cardioprotection against ischemia-reperfusion injury (IRI). We investigated whether the activation of the SAFE pathway by exogenous S1P is dependent on the activation of SK1 for cardioprotection., Materials and Methods: Isolated cardiomyocytes from TNF-α knockout (KO) mice, cardiomyocyte-specific STAT-3 KO mice and their wild-type (WT) littermates were exposed to simulated ischemia in the presence of a trigger of the SAFE pathway (S1P) and SK1 inhibitor (SK1-I). Similarly, isolated perfused hearts from adult TNF-α KO, STAT-3 KO and WT mice were subjected to IRI with S1P and/or SK1-I. Cell viability, infarct size (IS) and SK1 activity were assessed., Key Findings: In isolated cardiomyocytes and in isolated hearts subjected to simulated ischemia/IRI, S1P pretreatment decreased cell death in WT mice, an effect that was abrogated in the presence of SK1-I. S1P failed to reduce cell death after simulated ischemia/IRI in both cardiomyocytes or hearts isolated from TNF-α KO and STAT-3 KO mice. Interestingly, S1P pretreatment increased SK1 activity in WT and STAT-3 KO mice, with no changes in TNF-α KO mice., Significance: Our data strongly suggest SK1 as a key component to activate STAT-3 downstream of TNF-α in the SAFE pathway, paving the way for the development of novel cardioprotective strategies that may target SK1 to modulate the SAFE pathway and increase cell survival following IRI., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF