1. An international code comparison study on coupled thermal, hydrologic and geomechanical processes of natural gas hydrate-bearing sediments
- Author
-
White, M. D., Kneafsey, T. J., Seol, Y., Waite, W. F., Uchida, S., Lin, J. S., Myshakin, E. M., Gai, X., Gupta, Shubhangi, Reagan, M. T., Queiruga, A. F., Kimoto, S., Baker, R. C., Boswell, R., Ciferno, J., Collett, T., Choi, J., Dai, S., De La Fuente, M., Fu, P., Fujii, T., Intihar, C. G., Jang, J., Ju, X., Kang, J., Kim, J. H., Kim, J. T., Kim, S. J., Koh, C., Konno, Y., Kumagai, K., Lee, J. Y., Lee, W. S., Lei, L., Liu, F., Luo, H., Moridis, G. J., Morris, J., Nole, M., Otsuki, S., Sanchez, M., Shang, S., Shin, C., Shin, H. S., Soga, K., Sun, X., Suzuki, S., Tenma, N., Xu, T., Yamamoto, K., Yoneda, J., Yonkofski, C. M., Yoon, H. C., You, K., Yuan, Y., Zerpa, L., Zyrianova, M., White, M. D., Kneafsey, T. J., Seol, Y., Waite, W. F., Uchida, S., Lin, J. S., Myshakin, E. M., Gai, X., Gupta, Shubhangi, Reagan, M. T., Queiruga, A. F., Kimoto, S., Baker, R. C., Boswell, R., Ciferno, J., Collett, T., Choi, J., Dai, S., De La Fuente, M., Fu, P., Fujii, T., Intihar, C. G., Jang, J., Ju, X., Kang, J., Kim, J. H., Kim, J. T., Kim, S. J., Koh, C., Konno, Y., Kumagai, K., Lee, J. Y., Lee, W. S., Lei, L., Liu, F., Luo, H., Moridis, G. J., Morris, J., Nole, M., Otsuki, S., Sanchez, M., Shang, S., Shin, C., Shin, H. S., Soga, K., Sun, X., Suzuki, S., Tenma, N., Xu, T., Yamamoto, K., Yoneda, J., Yonkofski, C. M., Yoon, H. C., You, K., Yuan, Y., Zerpa, L., and Zyrianova, M.
- Abstract
Highlights • Code comparisons build confidence in simulators to model interdependent processes. • International hydrate reservoir simulators are compared over five complex problems. • Geomechanical processes significantly impact response of gas hydrate reservoirs. • Simulators yielded comparable results, however many differences are noted. • Equivalent constitutive models are required to achieve agreement across simulators. Geologic reservoirs containing gas hydrate occur beneath permafrost environments and within marine continental slope sediments, representing a potentially vast natural gas source. Numerical simulators provide scientists and engineers with tools for understanding how production efficiency depends on the numerous, interdependent (coupled) processes associated with potential production strategies for these gas hydrate reservoirs. Confidence in the modeling and forecasting abilities of these gas hydrate reservoir simulators (GHRSs) grows with successful comparisons against laboratory and field test results, but such results are rare, particularly in natural settings. The hydrate community recognized another approach to building confidence in the GHRS: comparing simulation results between independently developed and executed computer codes on structured problems specifically tailored to the interdependent processes relevant for gas hydrate-bearing systems. The United States Department of Energy, National Energy Technology Laboratory, (DOE/NETL), sponsored the first international gas hydrate code comparison study, IGHCCS1, in the early 2000s. IGHCCS1 focused on coupled thermal and hydrologic processes associated with producing gas hydrates from geologic reservoirs via depressurization and thermal stimulation. Subsequently, GHRSs have advanced to model more complex production technologies and incorporate geomechanical processes into the existing framework of coupled thermal and hydrologic modeling. This paper contributes to the validation of these recen
- Published
- 2020
- Full Text
- View/download PDF