1. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps
- Author
-
Arnan Araza, Sytze de Bruin, Martin Herold, Shaun Quegan, Nicolas Labriere, Pedro Rodriguez-Veiga, Valerio Avitabile, Maurizio Santoro, Edward T.A. Mitchard, Casey M. Ryan, Oliver L. Phillips, Simon Willcock, Hans Verbeeck, Joao Carreiras, Lars Hein, Mart-Jan Schelhaas, Ana Maria Pacheco-Pascagaza, Polyanna da Conceição Bispo, Gaia Vaglio Laurin, Ghislain Vieilledent, Ferry Slik, Arief Wijaya, Simon L. Lewis, Alexandra Morel, Jingjing Liang, Hansrajie Sukhdeo, Dmitry Schepaschenko, Jura Cavlovic, Hammad Gilani, Richard Lucas, Wageningen University and Research [Wageningen] (WUR), NERC National Centre for Earth Observation (NCEO), Natural Environment Research Council (NERC), Evolution et Diversité Biologique (EDB), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), University of Leicester, Gamma Remote Sensing Research and Consulting AG, University of Edinburgh, Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM), Département Systèmes Biologiques (Cirad-BIOS), and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
- Subjects
Map validation ,Bos- en Landschapsecologie ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,CARBON ,biomasse aérienne des arbres ,Laboratory of Geo-information Science and Remote Sensing ,K01 - Foresterie - Considérations générales ,Forest and Landscape Ecology ,GROUND DATA ,GROWING STOCK VOLUME ,Inventaire forestier ,Geology ,Carbon cycle ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,Remote sensing ,Milieusysteemanalyse ,Incertitude ,Vegetatie, Bos- en Landschapsecologie ,Mad validation ,Télédétection ,RETRIEVAL ,MODELS ,Soil Science ,ERRORS ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,AGB ,Couverture végétale ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,Uncertainty assessment ,Computers in Earth Sciences ,FIELD ,Modélisation environnementale ,Vegetatie ,Vegetation ,AREA ,FOREST BIOMASS ,15. Life on land ,cartographie des fonctions de la forêt ,Environmental Systems Analysis ,13. Climate action ,Earth and Environmental Sciences ,cavelab ,Vegetation, Forest and Landscape Ecology ,U30 - Méthodes de recherche ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
International audience; Over the past decade, several global maps of above-ground biomass (AGB) have been produced, but they exhibit significant differences that reduce their value for climate and carbon cycle modelling, and also for national estimates of forest carbon stocks and their changes. The number of such maps is anticipated to increase because of new satellite missions dedicated to measuring AGB. Objective and consistent methods to estimate the accuracy and uncertainty of AGB maps are therefore urgently needed. This paper develops and demonstrates a framework aimed at achieving this. The framework provides a means to compare AGB maps with AGB estimates from a global collection of National Forest Inventories and research plots that accounts for the uncertainty of plot AGB errors. This uncertainty depends strongly on plot size, and is dominated by the combined errors from tree measurements and allometric models (inter-quartile range of their standard deviation (SD) = 30–151 Mg ha−1). Estimates of sampling errors are also important, especially in the most common case where plots are smaller than map pixels (SD = 16–44 Mg ha−1). Plot uncertainty estimates are used to calculate the minimum-variance linear unbiased estimates of the mean forest AGB when averaged to 0.1∘. These are used to assess four AGB maps: Baccini (2000), GEOCARBON (2008), GlobBiomass (2010) and CCI Biomass (2017). Map bias, estimated using the differences between the plot and 0.1∘ map averages, is modelled using random forest regression driven by variables shown to affect the map estimates. The bias model is particularly sensitive to the map estimate of AGB and tree cover, and exhibits strong regional biases. Variograms indicate that AGB map errors have map-specific spatial correlation up to a range of 50–104 km, which increases the variance of spatially aggregated AGB map estimates compared to when pixel errors are independent. After bias adjustment, total pantropical AGB and its associated SD are derived for the four map epochs. This total becomes closer to the value estimated by the Forest Resources Assessment after every epoch and shows a similar decrease. The framework is applicable to both local and global-scale analysis, and is available at https://github.com/arnanaraza/PlotToMap. Our study therefore constitutes a major step towards improved AGB map validation and improvement.
- Published
- 2022