1. Quantifying brain development in the HEALthy Brain and Child Development (HBCD) Study: The magnetic resonance imaging and spectroscopy protocol.
- Author
-
Dean DC 3rd, Tisdall MD, Wisnowski JL, Feczko E, Gagoski B, Alexander AL, Edden RAE, Gao W, Hendrickson TJ, Howell BR, Huang H, Humphreys KL, Riggins T, Sylvester CM, Weldon KB, Yacoub E, Ahtam B, Beck N, Banerjee S, Boroday S, Caprihan A, Caron B, Carpenter S, Chang Y, Chung AW, Cieslak M, Clarke WT, Dale A, Das S, Davies-Jenkins CW, Dufford AJ, Evans AC, Fesselier L, Ganji SK, Gilbert G, Graham AM, Gudmundson AT, Macgregor-Hannah M, Harms MP, Hilbert T, Hui SCN, Irfanoglu MO, Kecskemeti S, Kober T, Kuperman JM, Lamichhane B, Landman BA, Lecour-Bourcher X, Lee EG, Li X, MacIntyre L, Madjar C, Manhard MK, Mayer AR, Mehta K, Moore LA, Murali-Manohar S, Navarro C, Nebel MB, Newman SD, Newton AT, Noeske R, Norton ES, Oeltzschner G, Ongaro-Carcy R, Ou X, Ouyang M, Parrish TB, Pekar JJ, Pengo T, Pierpaoli C, Poldrack RA, Rajagopalan V, Rettmann DW, Rioux P, Rosenberg JT, Salo T, Satterthwaite TD, Scott LS, Shin E, Simegn G, Simmons WK, Song Y, Tikalsky BJ, Tkach J, van Zijl PCM, Vannest J, Versluis M, Zhao Y, Zöllner HJ, Fair DA, Smyser CD, and Elison JT
- Subjects
- Humans, Child, Preschool, Infant, Longitudinal Studies, Female, Child, Male, Prospective Studies, Neuroimaging methods, Infant, Newborn, Magnetic Resonance Spectroscopy methods, Brain diagnostic imaging, Brain growth & development, Magnetic Resonance Imaging methods, Child Development physiology
- Abstract
The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. The acquisition of multimodal magnetic resonance-based brain development data is central to the study's core protocol. However, application of Magnetic Resonance Imaging (MRI) methods in this population is complicated by technical challenges and difficulties of imaging in early life. Overcoming these challenges requires an innovative and harmonized approach, combining age-appropriate acquisition protocols together with specialized pediatric neuroimaging strategies. The HBCD MRI Working Group aimed to establish a core acquisition protocol for all 27 HBCD Study recruitment sites to measure brain structure, function, microstructure, and metabolites. Acquisition parameters of individual modalities have been matched across MRI scanner platforms for harmonized acquisitions and state-of-the-art technologies are employed to enable faster and motion-robust imaging. Here, we provide an overview of the HBCD MRI protocol, including decisions of individual modalities and preliminary data. The result will be an unparalleled resource for examining early neurodevelopment which enables the larger scientific community to assess normative trajectories from birth through childhood and to examine the genetic, biological, and environmental factors that help shape the developing brain., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Tobias Kober and Tom Hilbert are employees of Siemens Healthineers International AG, Switzerland. Yulin Chang is an employee of Siemens Medical Solutions USA Inc. Dan Rettmann and Ralph Noeske are employed by GE HealthCare. Guillaume Gilbert, Yansong Zhao, Sandeep Ganji, and Maarten Versluis are employed by Philips Healthcare. Carina Lucena, Lucky Heisler-Roman, and Dhruman Goradia are employed by PrimeNeuro Inc. Under a license agreement between Philips and the Johns Hopkins University, Dr. van Zijl and the University are entitled to fees related to an imaging device used in the study discussed for publication. Dr. van Zijl also is a paid lecturer for Philips and receives research support from Philips. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. Damien Fair is a patent holder on the Framwise Integrated Real-Time Motion Monitoring (FIRMM) software. He is also a co-founder of Turing Medical Technologies, Inc. The nature of this financial interest and the design of the study have been reviewed by two committees at the University of Minnesota. They have put in place a plan to help ensure that this research is not affected by the financial interest. All other authors report no biomedical financial interests or potential conflicts of interest., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF