1. A detailed study on the physical, mechanical, structural and gamma ray shielding properties of Al2O3–Na2O–SiO2–B2O3–Bi2O3glass system
- Author
-
M.I. Sayyed, Ashok Kumar, Taha A. Hanafy, and Yasser Maghrbi
- Subjects
Borosilicate glasses ,Density ,Elastic moduli ,Phy-X software ,Gamma shielding ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
The density, boron–boron separation, and molar volume of 4Al2O3–12Na2O-(18-x)SiO2-(64-x) B2O3-(2+2x)Bi2O3 (where x = 2, 4, 6 and 8 mol%) are increasing with the addition of Bi2O3. The addition of Bi2O3 results in an open network structure. The elastic moduli decrease from 34.711 to 29.875 GPa for Young modulus (E); 20.395 to 15.843 GPa for bulk modulus (B); from 15.257 to 13.494 GPa for shear modulus (G) and 40.738 to 33.836 GPa for longitudinal (L) respectively with increased Bi2O3 concentration. FTIR spectrainvestigation found BO3, BO4, SiO4, and BiO6 structural units to be present. The glasses' highest mass attenuation coefficient (MAC) is at 0.0395 MeV, the lowest energy value. It gradually decreases as energy increases. There is a decrease in the linear attenuation coefficient (LAC) values with energy. Sample Bi18 has the highest MAC and LAC values due to its high concentration of Bi2O3. Across the entire energy range, sample Bi18 has the highest effective atomic number, and the lowest half value layer and mean free path values across all energy values. The transmission factor (TF) values for Bi6 indicate that the required thickness for blocking 90% of the radiation must be greater than the thickness necessaryfor the attenuation of 50%. Bi18 has the lowest TF compared to other glass samples. The radiation protection efficiency values for Bi18 are highest, confirming their full protection ability. Bi18's is the best choice for radiation shielding.
- Published
- 2024
- Full Text
- View/download PDF