1. IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems
- Author
-
Bruno Bureau, Yves Garrabos, Florent Starecki, Fabien Palencia, C. Lecoutre, Radwan Chahal, Catherine Boussard-Plédel, Samuel Marre, Virginie Nazabal, Sandy Morais, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), ADEME, ANR-12-SEED-0001,CGSµLab,Micro-laboratoires géologiques sur puce pour l'étude des processus clés du transport réactif multiphasique appliqués au stockage géologique du CO2.(2012), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Infrared ,Chalcogenide ,Microfluidics ,Glass fiber ,Analytical chemistry ,02 engineering and technology ,Management, Monitoring, Policy and Law ,01 natural sciences ,7. Clean energy ,Industrial and Manufacturing Engineering ,chemistry.chemical_compound ,Microsystem ,Absorption (electromagnetic radiation) ,Microchannel ,business.industry ,010401 analytical chemistry ,Doping ,Rare earth infrared luminescence ,Chalcogenide glass and fiber ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Microreactors ,Pollution ,Optical absorption spectroscopy ,0104 chemical sciences ,General Energy ,chemistry ,Carbon dioxide ,13. Climate action ,Optoelectronics ,0210 nano-technology ,business ,Geological lab-on-chip - Abstract
International audience; This paper reports the carbon dioxide detection in silicon-Pyrex high pressure microfluidic devices mimicking geological conditions encountered in deep saline aquifers using an in situ infrared optical sensor. The middle infrared source inserted inside the microchannel is based on infrared emission from Dy3+ sulfide glass fibers. The broad emission of the Dy3+ doping in infrared fibers is used to directly probe the CO2 thanks to the perfect overlap between the rare earth emission centered at 4.4 μm and the CO2 absorption band located at 4.3 μm. CO2 and water were clearly distinguished when using segmented flow on chip at pressures ranging from 4.5 to 6 MPa. These results demonstrate the feasibility of the infrared optical detection of other gases displaying absorption bands in the middle infrared domain for further developments of gas sensors, which can find applications in geological media monitoring and microfluidics.
- Published
- 2016
- Full Text
- View/download PDF