1. Assessment of anti-inflammatory-like, antioxidant activities and molecular docking of three alkynyl-substituted 3-ylidene-dihydrobenzo[d]isothiazole 1,1-dioxide derivatives.
- Author
-
Etsè KS, Etsè KD, Nyssen P, and Mouithys-Mickalad A
- Subjects
- Alkynes metabolism, Anti-Inflammatory Agents metabolism, Antioxidants metabolism, Cyclic S-Oxides metabolism, Drug Screening Assays, Antitumor, HL-60 Cells, Humans, Molecular Docking Simulation, Peroxidase metabolism, Protein Binding, Reactive Oxygen Species metabolism, Thiazoles metabolism, Alkynes pharmacology, Anti-Inflammatory Agents pharmacology, Antioxidants pharmacology, Cyclic S-Oxides pharmacology, Thiazoles pharmacology
- Abstract
The presence of enyne and benzoisothiazole functions in the molecular architecture of compounds 1, 2 and 3 were expected to provide biochemical activities. In the present work, we first examined the molecular surface contact of three alkynyl-substituted 3-ylidenedihydrobenzo[d] isothiazole 1,1-dioxides. The analysis of the Hirshfeld surfaces reveals that only compound 3 exhibited a well-defined red spots, indicating intermolecular interactions identified as S-O⋯H, C-H⋯O and C-O⋯H contacts. Comparative fingerprint histograms of the three compounds show that close pair interactions are dominated by C-H⋯H-C contact. By UV-visible analysis, compound 1 showed the most intense absorbances at 407 and 441 nm, respectively. The radical scavenging activity explored in the DPPH test, shows that only 1 exhibited low anti-radical activity. Furthermore, cellular antioxidant capacity of benzoisothiazoles 1-3 was investigated with PMA-activated HL-60 cells using chemiluminescence and fluorescence techniques in the presence of L-012 and Amplex Red probe, respectively. Results highlight that compound 1 exhibited moderate anti-ROS capacity while compounds 2 and 3 enhanced ROS production. The cytotoxicity test performed on HL-60 cells, using the MTS assay, confirmed the lack of toxicity of the tested benzoisothiazole 1 compared to 2 and 3 which show low cytotoxicity (≤30%). Anti-catalytic activity was evaluated by following the inhibitory potential of the benzoisothiazoles on MPO activity and depicted benzoisothiazoles-MPO interactions by docking. Both SIEFED and docking studies demonstrated an anti-catalytic activity of the tested benzoisothiazoles towards MPO with the best activity for compound 2., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF