24 results on '"CORVI Raffaella"'
Search Results
2. Contributors
- Author
-
Austin, Christopher P., primary, Balls, Michael, additional, Blaauboer, Bas J., additional, Botham, Philip, additional, Burt, Tal, additional, Casey, Warren, additional, Červinka, Miroslav, additional, Cheng, Shujun, additional, Combes, Robert D., additional, Corvi, Raffaella, additional, Cronin, Mark T.D., additional, Curren, Rodger D., additional, De Angelis, Isabella, additional, Dehne, Eva-Maria, additional, Doe, John, additional, Eskes, Chantra, additional, Feigenbaum, Alexandre, additional, Forgacs, Zsolt, additional, Forsby, Anna, additional, France, Malcolm P., additional, Freeman Bain, Simon A., additional, Goldberg, Alan, additional, Gruber, Franz P., additional, Guillouzo, André, additional, Hartung, Thomas, additional, Heinonen, Tuula, additional, Hickman, James, additional, Hill, Erin H., additional, Imai, Koichi, additional, Kandarova, Helena, additional, Kavlock, Robert J., additional, Kenna, J Gerry, additional, Knudsen, Lisbeth E., additional, Kojima, Hajime, additional, Kolar, Roman, additional, Leist, Marcel, additional, Lidbury, Brett A., additional, Lowit, Anna, additional, Minor, Philip, additional, Pfaller, Walter, additional, Prieto, Pilar, additional, Ram, Rebecca, additional, Repetto, Guillermo, additional, Rogiers, Vera, additional, Roi, Annett J., additional, Rowan, Andrew, additional, Sakai, Yasuyuki, additional, Sesardic, Thea, additional, Shuler, Michael, additional, Śladowski, Dariusz, additional, Spielmann, Horst, additional, Stephens, Martin L., additional, Tähti, Hanna, additional, Tanaka, Noriho, additional, Testai, Emanuela, additional, Tice, Raymond R., additional, Trigwell, Susan, additional, Verfaillie, Catherine, additional, von Aulock, Sonja, additional, Worth, Andrew P., additional, Yoon, Miyoung, additional, and Zuang, Valérie, additional
- Published
- 2019
- Full Text
- View/download PDF
3. Towards achieving a modern science-based paradigm for agrochemical carcinogenicity assessment.
- Author
-
Hilton GM, Corvi R, Luijten M, Mehta J, and Wolf DC
- Subjects
- Animals, Humans, Carcinogenicity Tests, Biological Assay, Rodentia, Risk Assessment, Agrochemicals toxicity, Carcinogens toxicity
- Abstract
The rodent cancer bioassay has been the standard approach to fulfill regulatory requirements for assessing human carcinogenic potential of agrochemicals, food additives, industrial chemicals, and pharmaceuticals. Decades of research have described the limitations of the rodent cancer bioassay leading to international initiatives to seek alternatives and establish approaches that modernize carcinogenicity assessment. Biologically relevant approaches can provide mechanistic information and increased efficiency for evaluating hazard and risk of chemical carcinogenicity to humans. The application of human-relevant mechanistic understanding to support new approaches to carcinogenicity assessment will be invaluable for regulatory decision-making. The present work outlines the challenges and opportunities that authorities should consider as they come together to build a roadmap that leads to global acceptance and incorporation of fit-for-purpose, scientifically defensible new approaches for human-relevant carcinogenicity assessment of agrochemicals., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Co-author Jyotigna Mehta reports financial support was provided by ADAMA Agricultural Solutions Ltd. Jyotigna Mehta reports a relationship with ADAMA Agricultural Solutions Ltd that includes: employment. Co-author Douglas C Wolf reports financial support was provided by Syngenta Crop Protection LLC. Douglas C Wolf reports a relationship with Syngenta Crop Protection LLC that includes: employment., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
4. Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology.
- Author
-
Harrill JA, Viant MR, Yauk CL, Sachana M, Gant TW, Auerbach SS, Beger RD, Bouhifd M, O'Brien J, Burgoon L, Caiment F, Carpi D, Chen T, Chorley BN, Colbourne J, Corvi R, Debrauwer L, O'Donovan C, Ebbels TMD, Ekman DR, Faulhammer F, Gribaldo L, Hilton GM, Jones SP, Kende A, Lawson TN, Leite SB, Leonards PEG, Luijten M, Martin A, Moussa L, Rudaz S, Schmitz O, Sobanski T, Strauss V, Vaccari M, Vijay V, Weber RJM, Williams AJ, Williams A, Thomas RS, and Whelan M
- Subjects
- Documentation standards, Humans, Metabolomics standards, Organisation for Economic Co-Operation and Development standards, Toxicogenetics standards, Toxicology standards, Transcriptome physiology
- Abstract
Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD., (Published by Elsevier Inc.)
- Published
- 2021
- Full Text
- View/download PDF
5. A comprehensive view on mechanistic approaches for cancer risk assessment of non-genotoxic agrochemicals.
- Author
-
Luijten M, Corvi R, Mehta J, Corvaro M, Delrue N, Felter S, Haas B, Hewitt NJ, Hilton G, Holmes T, Jacobs MN, Jacobs A, Lamplmair F, Lewis D, Madia F, Manou I, Melching-Kollmuss S, Schorsch F, Schütte K, Sewell F, Strupp C, van der Laan JW, Wolf DC, Wolterink G, Woutersen R, Zvonar Z, Heusinkveld H, and Braakhuis H
- Subjects
- Animals, Cell Transformation, Neoplastic genetics, Cell Transformation, Neoplastic metabolism, Cell Transformation, Neoplastic pathology, Congresses as Topic, Humans, Mutagenicity Tests, Neoplasms genetics, Neoplasms metabolism, Neoplasms pathology, Risk Assessment, Toxicity Tests, Subchronic, Toxicokinetics, Agrochemicals adverse effects, Animal Testing Alternatives, Carcinogenicity Tests, Cell Transformation, Neoplastic chemically induced, Neoplasms chemically induced
- Abstract
Currently the only methods for non-genotoxic carcinogenic hazard assessment accepted by most regulatory authorities are lifetime carcinogenicity studies. However, these involve the use of large numbers of animals and the relevance of their predictive power and results has been scientifically challenged. With increased availability of innovative test methods and enhanced understanding of carcinogenic processes, it is believed that tumour formation can now be better predicted using mechanistic information. A workshop organised by the European Partnership on Alternative Approaches to Animal Testing brought together experts to discuss an alternative, mechanism-based approach for cancer risk assessment of agrochemicals. Data from a toolbox of test methods for detecting modes of action (MOAs) underlying non-genotoxic carcinogenicity are combined with information from subchronic toxicity studies in a weight-of-evidence approach to identify carcinogenic potential of a test substance. The workshop included interactive sessions to discuss the approach using case studies. These showed that fine-tuning is needed, to build confidence in the proposed approach, to ensure scientific correctness, and to address different regulatory needs. This novel approach was considered realistic, and its regulatory acceptance and implementation can be facilitated in the coming years through continued dialogue between all stakeholders and building confidence in alternative approaches., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
6. Corrigendum to "EURL ECVAM genotoxicity and carcinogenicity database of substances eliciting negative results in the Ames test: Construction of the database" [Mutat. Res. 854-855 June-July (2020) 503199].
- Author
-
Madia F, Kirkland D, Morita T, White P, Asturiol D, and Corvi R
- Published
- 2020
- Full Text
- View/download PDF
7. EURL ECVAM Genotoxicity and Carcinogenicity Database of Substances Eliciting Negative Results in the Ames Test: Construction of the Database.
- Author
-
Madia F, Kirkland D, Morita T, White P, Asturiol D, and Corvi R
- Subjects
- Animals, DNA Damage drug effects, DNA Damage genetics, Data Management standards, Humans, Carcinogenicity Tests standards, Carcinogens toxicity, Databases, Factual standards, Mutagenicity Tests standards, Mutagens toxicity, Negative Results standards
- Abstract
The bacterial reverse mutation test (Ames test) is the most commonly used genotoxicity test; it is a primary component of the chemical safety assessment data required by regulatory agencies worldwide. Within the current accepted in vitro genotoxicity test battery, it is considered capable of revealing DNA reactivity, and identifying substances that can produce gene mutations via different mechanisms. The previously published consolidated EURL ECVAM Genotoxicity and Carcinogenicity Database, which includes substances that elicited a positive response in the Ames test, constitutes a collection of data that serves as a reference for a number of regulatory activities in the area of genotoxicity testing. Consequently, we considered it important to expand the database to include substances that fail to elicit a positive response in the Ames test, i.e., Ames negative substances. Here, we describe a curated collection of 211 Ames negative substances, with a summary of complementary data available for other genotoxicity endpoints in vitro and in vivo, plus available carcinogenicity data. A descriptive analysis of the data is presented. This includes a representation of the chemical space formed by the Ames-negative database with respect to other substances (e.g. REACH registered substances, approved drugs, pesticides, etc.) and a description of the organic functional groups found in the database. We also provide some suggestions on further analyses that could be made., (Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
8. Use of in vitro 3D tissue models in genotoxicity testing: Strategic fit, validation status and way forward. Report of the working group from the 7 th International Workshop on Genotoxicity Testing (IWGT).
- Author
-
Pfuhler S, van Benthem J, Curren R, Doak SH, Dusinska M, Hayashi M, Heflich RH, Kidd D, Kirkland D, Luan Y, Ouedraogo G, Reisinger K, Sofuni T, van Acker F, Yang Y, and Corvi R
- Subjects
- DNA Damage genetics, Humans, Liver drug effects, Liver pathology, Micronucleus Tests, DNA Damage drug effects, Metagenomics trends, Mutagenicity Tests methods, Mutagens toxicity
- Abstract
Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue equivalents. In light of these advancements, a "Use of 3D Tissues in Genotoxicity Testing" working group (WG) met at the 7
th IWGT meeting in Tokyo in November 2017 to discuss progress with these models and how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have reached an advanced state of validation following over 10 years of development, while liver and airway model-based genotoxicity assays show promise but are at an early stage of development. Further effort in liver and airway model-based assays is needed to address the lack of coverage of the three main endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now sufficiently validated to undergo an independent peer review of the validation study, followed by development of individual OECD Test Guidelines., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
9. One science-driven approach for the regulatory implementation of alternative methods: A multi-sector perspective.
- Author
-
Dal Negro G, Eskes C, Belz S, Bertein C, Chlebus M, Corvaro M, Corvi R, Dhalluin S, Halder M, Harvey J, Hermann M, Hoffmann-Dörr S, Kilian K, Lambrigts D, Laroche C, Louhimies S, Mahony C, Manou I, McNamee P, Prieto P, Reid K, Roggen E, Schutte K, Stirling C, Uhlrich S, Weissenhorn R, and Whelan M
- Subjects
- Animals, Europe, Humans, Risk Assessment legislation & jurisprudence, Toxicity Tests standards, Animal Testing Alternatives legislation & jurisprudence, Industry legislation & jurisprudence
- Abstract
EU regulations call for the use of alternative methods to animal testing. During the last decade, an increasing number of alternative approaches have been formally adopted. In parallel, new 3Rs-relevant technologies and mechanistic approaches have increasingly contributed to hazard identification and risk assessment evolution. In this changing landscape, an EPAA meeting reviewed the challenges that different industry sectors face in the implementation of alternative methods following a science-driven approach. Although clear progress was acknowledged in animal testing reduction and refinement thanks to an integration of scientifically robust approaches, the following challenges were identified: i) further characterization of toxicity pathways; ii) development of assays covering current scientific gaps, iii) better characterization of links between in vitro readouts and outcome in the target species; iv) better definition of alternative method applicability domains, and v) appropriate implementation of the available approaches. For areas having regulatory adopted alternative methods (e.g., vaccine batch testing), harmonised acceptance across geographical regions was considered critical for broader application. Overall, the main constraints to the application of non-animal alternatives are the still existing gaps in scientific knowledge and technological limitations. The science-driven identification of most appropriate methods is key for furthering a multi-sectorial decrease in animal testing., (Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
10. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests.
- Author
-
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, and Corvi R
- Subjects
- Animals, Carcinogens toxicity, Cell Line, Tumor, Chromosome Aberrations chemically induced, Databases, Factual, Escherichia coli drug effects, Escherichia coli growth & development, Humans, Mice, Rodentia, Sensitivity and Specificity, Aneugens toxicity, DNA Damage drug effects, Mutagenicity Tests methods
- Abstract
In 2008 we published recommendations on chemicals that would be appropriate to evaluate the sensitivity and specificity of new/modified mammalian cell genotoxicity tests, in particular to avoid misleading positive results. In light of new data it is appropriate to update these lists of chemicals. An expert panel was convened and has revised the recommended chemicals to fit the following different sets of characteristics: • Group 1: chemicals that should be detected as positive in in vitro mammalian cell genotoxicity tests. Chemicals in this group are all in vivo genotoxins at one or more endpoints, either due to DNA-reactive or non DNA-reactive mechanisms. Many are known carcinogens with a mutagenic mode of action, but a sub-class of probable aneugens has been introduced. • Group 2: chemicals that should give negative results in in vitro mammalian cell genotoxicity tests. Chemicals in this group are usually negative in vivo and non-DNA-reactive. They are either non-carcinogenic or rodent carcinogens with a non-mutagenic mode of action. • Group 3: chemicals that should give negative results in in vitro mammalian cell genotoxicity tests, but have been reported to induce gene mutations in mouse lymphoma cells, chromosomal aberrations or micronuclei, often at high concentrations or at high levels of cytotoxicity. Chemicals in this group are generally negative in vivo and negative in the Ames test. They are either non-carcinogenic or rodent carcinogens with an accepted non-mutagenic mode of action. This group contains comments as to any conditions that can be identified under which misleading positive results are likely to occur. This paper, therefore, updates these three recommended lists of chemicals and describes how these should be used for any test evaluation program., (Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
11. The JaCVAM international validation study on the in vivo comet assay: Selection of test chemicals.
- Author
-
Morita T, Uno Y, Honma M, Kojima H, Hayashi M, Tice RR, Corvi R, and Schechtman L
- Subjects
- Animals, Carcinogens toxicity, DNA Damage drug effects, Databases, Factual, Dose-Response Relationship, Drug, Female, Male, Mutagens toxicity, Rats, Reproducibility of Results, Sensitivity and Specificity, Toxicity Tests, Acute, Comet Assay methods, Comet Assay standards
- Abstract
The Japanese Center for the Validation of Alternative Methods (JaCVAM) sponsored an international prevalidation and validation study of the in vivo rat alkaline pH comet assay. The main objective of the study was to assess the sensitivity and specificity of the assay for correctly identifying genotoxic carcinogens, as compared with the traditional rat liver unscheduled DNA synthesis assay. Based on existing carcinogenicity and genotoxicity data and chemical class information, 90 chemicals were identified as primary candidates for use in the validation study. From these 90 chemicals, 46 secondary candidates and then 40 final chemicals were selected based on a sufficiency of carcinogenic and genotoxic data, differences in chemical class or genotoxic or carcinogenic mode of action (MOA), availability, price, and ease of handling. These 40 chemicals included 19 genotoxic carcinogens, 6 genotoxic non-carcinogens, 7 non-genotoxic carcinogens and 8 non-genotoxic non-carcinogens. "Genotoxicity" was defined as positive in the Ames mutagenicity test or in one of the standard in vivo genotoxicity tests (primarily the erythrocyte micronucleus assay). These chemicals covered various chemicals classes, MOAs, and genotoxicity profiles and were considered to be suitable for the purpose of the validation study. General principles of chemical selection for validation studies are discussed., (Copyright © 2015 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
12. JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for the detection of genotoxic carcinogens: I. Summary of pre-validation study results.
- Author
-
Uno Y, Kojima H, Omori T, Corvi R, Honma M, Schechtman LM, Tice RR, Burlinson B, Escobar PA, Kraynak AR, Nakagawa Y, Nakajima M, Pant K, Asano N, Lovell D, Morita T, Ohno Y, and Hayashi M
- Subjects
- Animals, Europe, Guidelines as Topic, Liver drug effects, Male, Rats, Rats, Sprague-Dawley, Reproducibility of Results, Societies, Scientific, Stomach drug effects, United States, Carcinogens analysis, Comet Assay methods, Comet Assay standards, DNA Damage
- Abstract
The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this validation effort was to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The purpose of the pre-validation studies (i.e., Phase 1 through 3), conducted in four or five laboratories with extensive comet assay experience, was to optimize the protocol to be used during the definitive validation study., (Copyright © 2015 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
13. JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for detection of genotoxic carcinogens: II. Summary of definitive validation study results.
- Author
-
Uno Y, Kojima H, Omori T, Corvi R, Honma M, Schechtman LM, Tice RR, Beevers C, De Boeck M, Burlinson B, Hobbs CA, Kitamoto S, Kraynak AR, McNamee J, Nakagawa Y, Pant K, Plappert-Helbig U, Priestley C, Takasawa H, Wada K, Wirnitzer U, Asano N, Escobar PA, Lovell D, Morita T, Nakajima M, Ohno Y, and Hayashi M
- Subjects
- Animals, DNA Damage, Ethyl Methanesulfonate, Liver drug effects, Male, Rats, Rats, Sprague-Dawley, Stomach drug effects, Carcinogens analysis, Comet Assay methods, Comet Assay standards
- Abstract
The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this exercise was to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The study protocol was optimized in the pre-validation studies, and then the definitive (4th phase) validation study was conducted in two steps. In the 1st step, assay reproducibility was confirmed among laboratories using four coded reference chemicals and the positive control ethyl methanesulfonate. In the 2nd step, the predictive capability was investigated using 40 coded chemicals with known genotoxic and carcinogenic activity (i.e., genotoxic carcinogens, genotoxic non-carcinogens, non-genotoxic carcinogens, and non-genotoxic non-carcinogens). Based on the results obtained, the in vivo comet assay is concluded to be highly capable of identifying genotoxic chemicals and therefore can serve as a reliable predictor of rodent carcinogenicity., (Copyright © 2015 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
14. Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? I. Reports of individual databases presented at an EURL ECVAM Workshop.
- Author
-
Kirkland D, Zeiger E, Madia F, Gooderham N, Kasper P, Lynch A, Morita T, Ouedraogo G, Parra Morte JM, Pfuhler S, Rogiers V, Schulz M, Thybaud V, van Benthem J, Vanparys P, Worth A, and Corvi R
- Subjects
- Animals, DNA Damage drug effects, Databases, Factual, Europe, Humans, In Vitro Techniques, Rodentia, Toxicity Tests methods, Carcinogens toxicity, Mutagens toxicity, Toxicity Tests trends
- Abstract
Positive results in the Ames test correlate well with carcinogenic potential in rodents. This correlation is not perfect because mutations are only one of many stages in tumour development. Also, situations can be envisaged where the mutagenic response may be specific to the bacteria or the test protocol, e.g., bacterial-specific metabolism, exceeding a detoxification threshold, or the induction of oxidative damage to which bacteria may be more sensitive than mammalian cells in vitro or tissues in vivo. Since most chemicals are also tested for genotoxicity in mammalian cells, the pattern of mammalian cell results may help identify whether Ames-positive results predict carcinogenic or in vivo mutagenic activity. A workshop was therefore organised and sponsored by the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) to investigate this further. Participants presented results from other genotoxicity tests with Ames-positive compounds. Data came from published, regulatory agency, and industry sources. The question was posed whether negative results in mammalian cell tests were associated with absence of carcinogenic or in vivo genotoxic activity despite a positive Ames test. In the limited time available, the presented data were combined and an initial analysis suggested that the association of negative in vitro mammalian cell test results with lack of in vivo genotoxic or carcinogenic activity could have some significance. Possible reasons why a positive Ames test may not be associated with in vivo activity and what additional investigations/tests might contribute to a more robust evaluation were discussed. Because a considerable overlap was identified among the different databases presented, it was recommended that a consolidated database be built, with overlapping chemicals removed, so that a more robust analysis of the predictive capacity for potential carcinogenic and in vivo genotoxic activity could be derived from the patterns of mammalian cell test results obtained for Ames-positive compounds., (Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
15. Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? II. Construction and analysis of a consolidated database.
- Author
-
Kirkland D, Zeiger E, Madia F, and Corvi R
- Subjects
- Animals, DNA Damage drug effects, Humans, In Vitro Techniques, Italy, Rodentia, Toxicity Tests, Carcinogens toxicity, Databases, Chemical, Mutagens toxicity
- Abstract
A Workshop sponsored by EURL ECVAM was held in Ispra, Italy in 2013 to consider whether the in vitro mammalian cell genotoxicity test results could complement and mitigate the implications of a positive Ames test response for the prediction of in vivo genotoxicity and carcinogenicity, and if patterns of results could be identified. Databases of Ames-positive chemicals that were tested for in vivo genotoxicity and/or carcinogenicity were collected from different sources and analysed individually (Kirkland et al., in this issue). Because there were overlaps and inconsistent test results among chemicals in the different databases, a combined database which eliminated the overlaps and evaluated the inconsistencies was considered preferable for addressing the above question. A database of >700 Ames-positive chemicals also tested in vivo was compiled, and the results in in vitro mammalian cell tests were analysed. Because the database was limited to Ames-positive chemicals, the majority (>85%) of carcinogens (103/119) and in vivo genotoxins (83/88) were positive when tested in both in vitro gene mutation and aneugenicity/clastogenicity tests. However, about half (>45%) of chemicals that were not carcinogenic (19/28) or genotoxic in vivo (33/73) also gave the same patterns of positive mammalian cell results. Although the different frequencies were statistically significant, positive results in 2 in vitro mammalian cell tests did not, per se, add to the predictivity of the positive Ames test. By contrast, negative results for both in vitro mammalian cell endpoints were rare for Ames-positive carcinogens (3/119) and in vivo genotoxins (2/88) but, were significantly more frequent for Ames-positive chemicals that are not carcinogenic (4/28) or genotoxic in vivo (14/73). Thus, in the case of an Ames-positive chemical, negative results in 2 in vitro mammalian cell tests covering both mutation and clastogenicity/aneugenicity endpoints should be considered as indicative of absence of in vivo genotoxic or carcinogenic potential., (Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
16. The 3T3 neutral red uptake phototoxicity test: practical experience and implications for phototoxicity testing--the report of an ECVAM-EFPIA workshop.
- Author
-
Ceridono M, Tellner P, Bauer D, Barroso J, Alépée N, Corvi R, De Smedt A, Fellows MD, Gibbs NK, Heisler E, Jacobs A, Jirova D, Jones D, Kandárová H, Kasper P, Akunda JK, Krul C, Learn D, Liebsch M, Lynch AM, Muster W, Nakamura K, Nash JF, Pfannenbecker U, Phillips G, Robles C, Rogiers V, Van De Water F, Liminga UW, Vohr HW, Wattrelos O, Woods J, Zuang V, Kreysa J, and Wilcox P
- Subjects
- 3T3 Cells, Animals, Biological Assay methods, Consumer Product Safety, Cosmetics toxicity, Drug Industry, Mice, Reactive Oxygen Species metabolism, Animal Testing Alternatives methods, Dermatitis, Phototoxic etiology, Neutral Red metabolism, Photosensitizing Agents toxicity, Toxicity Tests methods
- Abstract
This is the report from the "ECVAM-EFPIA workshop on 3T3 NRU Phototoxicity Test: Practical Experience and Implications for Phototoxicity Testing", jointly organized by ECVAM and EFPIA and held on the 25-27 October 2010 in Somma Lombardo, Italy. The European Centre for the Validation of Alternative Methods (ECVAM) was established in 1991 within the European Commission Joint Research, based on a Communication from the European Commission (1991). The main objective of ECVAM is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences and which reduce, refine and replace the use of laboratory animals. The European Federation of Pharmaceuticals Industries and Association (EFPIA) represent the pharmaceutical industry operating in Europe. Through its direct membership of 31 national associations and 40 leading pharmaceutical companies, EFPIA is the voice on the EU scene of 2200 companies committed to researching, developing and bringing to patients new medicines that improve health and the quality of life around the world. The workshop, co-chaired by Joachim Kreysa (ECVAM) and Phil Wilcox (GSK, EFPIA) involved thirty-five experts from academia, regulatory authorities and industry, invited to contribute with their experiences in the field of phototoxicology. The main objectives of the workshop were: -to present 'in use' experience of the pharmaceutical industry with the 3T3 Neutral Red Uptake Phototoxicity Test (3T3 NRU-PT), -to discuss why it differs from the results in the original validation exercise, -to discuss technical issues and consider ways to improve the usability of the 3T3 NRU-PT for (non-topical) pharmaceuticals, e.g., by modifying the threshold of chemical light absorption to trigger photo-toxicological testing, and by modifying technical aspects of the assay, or adjusting the criteria used to classify a positive response. During the workshop, the assay methodology was reviewed by comparing the OECD Test Guideline (TG 432) with the protocols used in testing laboratories, data from EFPIA and JPMA 'surveys' were presented and possible reasons for the outcomes were discussed. Experts from cosmetics and pharmaceutical industries reported on their experience with the 3T3 NRU-PT and evidence was presented for phototoxic clinical symptoms that could be linked to certain relevant molecules. Brainstorming sessions discussed if the 3T3 NRU-PT needed to be improved and whether alternatives to the 3T3 NRU-PT exist. Finally, the viewpoint from EU and US regulators was presented. In the final session, the conclusions of the meeting were summarized, with action points. It was concluded that the 3T3 NRU-PT identifies phototoxicological hazards with a 100% sensitivity, and thus is accepted as the tier one test that correctly identifies the absence of phototoxic potential. Consequently, positive results in the 3T3 NRU-PT often do not translate into a clinical phototoxicity risk. Possible ways to improve the practical use of this assay include: (i) adaptation of changed UV/vis-absorption criteria as a means to reduce the number of materials tested, (ii) reduction of the highest concentration to be tested, and (iii) consideration of modifying the threshold criteria for the prediction of a positive call in the test., (Copyright © 2012 Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
17. International prevalidation study on cell transformation assay. Preface.
- Author
-
Corvi R and Vanparys P
- Subjects
- Animal Testing Alternatives, Mutagenicity Tests methods, Mutagenicity Tests standards, Carcinogenicity Tests methods, Carcinogenicity Tests statistics & numerical data, Cell Transformation, Neoplastic
- Published
- 2012
- Full Text
- View/download PDF
18. Application of in vitro cell transformation assays in regulatory toxicology for pharmaceuticals, chemicals, food products and cosmetics.
- Author
-
Vanparys P, Corvi R, Aardema MJ, Gribaldo L, Hayashi M, Hoffmann S, and Schechtman L
- Subjects
- Animal Testing Alternatives methods, Animals, Carcinogens toxicity, Mutagenicity Tests, Toxicology methods, Carcinogenicity Tests methods, Cell Transformation, Neoplastic, Cosmetics toxicity, Drug and Narcotic Control legislation & jurisprudence, Drug-Related Side Effects and Adverse Reactions, Food Safety, Toxicology legislation & jurisprudence
- Abstract
Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals., (Copyright © 2012 Elsevier B.V. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
19. ECVAM prevalidation study on in vitro cell transformation assays: general outline and conclusions of the study.
- Author
-
Corvi R, Aardema MJ, Gribaldo L, Hayashi M, Hoffmann S, Schechtman L, and Vanparys P
- Subjects
- Animal Testing Alternatives standards, Animals, BALB 3T3 Cells, Carcinogenicity Tests standards, Carcinogens toxicity, Cricetinae, Mesocricetus, Mice, Reproducibility of Results, Validation Studies as Topic, Animal Testing Alternatives methods, Carcinogenicity Tests methods, Cell Transformation, Neoplastic
- Abstract
The potential for a compound to induce carcinogenicity is a key consideration when ascertaining hazard and risk assessment of chemicals. Among the in vitro alternatives that have been developed for predicting carcinogenicity, in vitro cell transformation assays (CTAs) have been shown to involve a multistage process that closely models important stages of in vivo carcinogenesis and have the potential to detect both genotoxic and non-genotoxic carcinogens. These assays have been in use for decades and a substantial amount of data demonstrating their performance is available in the literature. However, for the standardised use of these assays for regulatory purposes, a formal evaluation of the assays, in particular focusing on development of standardised transferable protocols and further information on assay reproducibility, was considered important to serve as a basis for the drafting of generally accepted OECD test guidelines. To address this issue, a prevalidation study of the CTAs using the BALB/c 3T3 cell line, SHE cells at pH 6.7, and SHE cells at pH 7.0 was coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and focused on issues of standardisation of protocols, test method transferability and within- and between-laboratory reproducibility. The study resulted in the availability of standardised protocols that had undergone prevalidation [1,2]. The results of the ECVAM study demonstrated that for the BALB/c 3T3 method, some modifications to the protocol were needed to obtain reproducible results between laboratories, while the SHE pH 6.7 and the SHE pH 7.0 protocols are transferable between laboratories, and results are reproducible within- and between-laboratories. It is recommended that the BALB/c 3T3 and SHE protocols as instituted in this prevalidation study should be used in future applications of these respective transformation assays. To support their harmonised use and regulatory application, the development of an OECD test guideline for the SHE CTAs, based on the protocol published in this issue, is recommended. The development of an OECD test guideline for the BALB/c 3T3 CTA should likewise be further pursued upon the availability of additional supportive data and improvement of the statistical analysis., (Copyright © 2011 Elsevier B.V. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
20. In vitro genotoxicity test approaches with better predictivity: summary of an IWGT workshop.
- Author
-
Pfuhler S, Fellows M, van Benthem J, Corvi R, Curren R, Dearfield K, Fowler P, Frötschl R, Elhajouji A, Le Hégarat L, Kasamatsu T, Kojima H, Ouédraogo G, Scott A, and Speit G
- Subjects
- Animals, Cell Line, Chromosome Aberrations, Guidelines as Topic, Humans, Micronucleus Tests methods, Predictive Value of Tests, Mutagenicity Tests methods, Mutagenicity Tests trends
- Abstract
Improving current in vitro genotoxicity tests is an ongoing task for genetic toxicologists. Further, the question on how to deal with positive in vitro results that are demonstrated to not predict genotoxicity or carcinogenicity potential in rodents or humans is a challenge. These two aspects were addressed at the 5th International Workshop on Genotoxicity Testing (IWGT) held in Basel, Switzerland, on August 17-19, 2009. The objectives of the working group (WG) were to make recommendations on the use of cell types or lines, if possible, and to provide evaluations of promising new approaches. Results obtained in rodent cell lines with impaired p53 function (L5178Y, V79, CHL and CHO cells) and human p53-competent cells (peripheral blood lymphocytes, TK6 and HepG2 cells) suggest that a reduction in the percentage of non-relevant positive results for carcinogenicity prediction can be achieved by careful selection of cells used without decreasing the sensitivity of the assays. Therefore, the WG suggested using p53- competent - preferably human - cells in in vitro micronucleus or chromosomal aberration tests. The use of the hepatoma cell line HepaRG for genotoxicity testing was considered promising since these cells possess better phase I and II metabolizing potential compared to cell lines commonly used in this area and may overcome the need for the addition of S9. For dermally applied compounds, the WG agreed that in vitro reconstructed skin models, once validated, will be useful to follow up on positive results from standard in vitro assays as they resemble the properties of human skin (barrier function, metabolism). While the reconstructed skin micronucleus assay has been shown to be further advanced, there was also consensus that the Comet assay should be further evaluated due to its independence from cell proliferation and coverage of a wider spectrum of DNA damage., (Copyright © 2011 Elsevier B.V. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
21. Reduction of use of animals in regulatory genotoxicity testing: Identification and implementation opportunities-Report from an ECVAM workshop.
- Author
-
Pfuhler S, Kirkland D, Kasper P, Hayashi M, Vanparys P, Carmichael P, Dertinger S, Eastmond D, Elhajouji A, Krul C, Rothfuss A, Schoening G, Smith A, Speit G, Thomas C, van Benthem J, and Corvi R
- Subjects
- Animals, DNA Damage, European Union, Female, Government Agencies, Male, Mutagenicity Tests standards, Mutagens classification, Research Design standards, Animal Testing Alternatives legislation & jurisprudence, Animal Welfare legislation & jurisprudence, Mutagens toxicity, Research Design legislation & jurisprudence, Toxicity Tests ethics, Toxicity Tests methods, Toxicity Tests standards
- Abstract
In vivo genetic toxicology tests measure direct DNA damage or the formation of gene or chromosomal mutations, and are used to predict the mutagenic and carcinogenic potential of compounds for regulatory purposes and/or to follow-up positive results from in vitro testing. These tests are widely used and consume large numbers of animals, with a foreseeable marked increase as a result of the EU chemicals legislation (REACH), which may require follow-up of any positive outcome in the in vitro standard battery with appropriate in vivo tests, regardless of the tonnage level of the chemical. A 2-day workshop with genotoxicity experts from academia, regulatory agencies and industry was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) in Ranco, Italy from 24 to 25 June 2008. The objectives of the workshop were to discuss how to reduce the number of animals in standard genotoxicity tests, whether the application of smarter test strategies can lead to lower animal numbers, and how the possibilities for reduction can be promoted and implemented. The workshop agreed that there are many reduction options available that are scientifically credible and therefore ready for use. Most of these are compliant with regulatory guidelines, i.e. the use of one sex only, one administration and two sampling times versus two or three administrations and one sampling time for micronucleus (MN), chromosomal aberration (CA) and Comet assays; and the integration of the MN endpoint into repeat-dose toxicity studies. The omission of a concurrent positive control in routine CA and MN tests has been proven to be scientifically acceptable, although the OECD guidelines still require this; also the combination of acute MN and Comet assay studies are compliant with guidelines, except for sampling times. Based on the data presented at the workshop, the participants concluded that these options have not been sufficiently utilized to date. Key factors for this seem to be the uncertainty regarding regulatory compliance/acceptance, lack of awareness, and an in many cases unjustified uncertainty regarding the scientific acceptance of reduction options. The workshop therefore encourages the use and promotion of these options as well as the dissemination of data related to reduction opportunities by the scientific community in order to boost the acceptance level of these approaches. Furthermore, experimental proof is needed and under way to demonstrate the credibility of additional options for reduction of the number of animals, such as the integration of the Comet assay into repeat-dose toxicity studies.
- Published
- 2009
- Full Text
- View/download PDF
22. The carcinoGENOMICS project: critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays.
- Author
-
Vinken M, Doktorova T, Ellinger-Ziegelbauer H, Ahr HJ, Lock E, Carmichael P, Roggen E, van Delft J, Kleinjans J, Castell J, Bort R, Donato T, Ryan M, Corvi R, Keun H, Ebbels T, Athersuch T, Sansone SA, Rocca-Serra P, Stierum R, Jennings P, Pfaller W, Gmuender H, Vanhaecke T, and Rogiers V
- Subjects
- Animal Testing Alternatives, European Union, Gene Expression Profiling, Hazardous Substances, International Cooperation, Toxicogenetics trends, Carcinogenicity Tests methods, Genomics methods
- Abstract
Recent changes in the European legislation of chemical-related substances have forced the scientific community to speed up the search for alternative methods that could partly or fully replace animal experimentation. The Sixth Framework Program project carcinoGENOMICS was specifically raised to develop omics-based in vitro screens for testing the carcinogenic potential of chemical compounds in a pan-European context. This paper provides an in-depth analysis of the complexity of choosing suitable reference compounds used for creating and fine-tuning the in vitro carcinogenicity assays. First, a number of solid criteria for the selection of the model compounds are defined. Secondly, the strategy followed, including resources consulted, is described and the selected compounds are briefly illustrated. Finally, limitations and problems encountered during the selection procedure are discussed. Since selecting an appropriate set of chemicals is a frequent impediment in the early stages of similar research projects, the information provided in this paper might be extremely valuable.
- Published
- 2008
- Full Text
- View/download PDF
23. Recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests: a follow-up to an ECVAM workshop.
- Author
-
Kirkland D, Kasper P, Müller L, Corvi R, and Speit G
- Subjects
- Animals, Chromosome Aberrations chemically induced, Mice, Mutagens classification, Mutagens pharmacology, Mutation drug effects, Education, Mutagenicity Tests methods, Mutagenicity Tests standards, Mutagens analysis
- Abstract
At a recent ECVAM workshop considering ways to reduce the frequency of irrelevant positive results in mammalian cell genotoxicity tests [D. Kirkland, S. Pfuhler, D. Tweats, M. Aardema, R. Corvi, F. Darroudi, A. Elhajouji, H.-R. Glatt, P. Hastwell, M. Hayashi, P. Kasper, S. Kirchner, A. Lynch, D. Marzin, D. Maurici, J.-R. Meunier, L. Müller, G. Nohynek, J. Parry, E. Parry, V. Thybaud, R. Tice, J. van Benthem, P. Vanparys, P. White, How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary followup animal tests: Report of an ECVAM Workshop, Mutat. Res. 628 (2007) 31-55], recommendations for improvements/modifications to existing tests, and suggestions for new assays were made. Following on from this, it was important to identify chemicals that could be used in the evaluation of modified or new assays. An expert panel was therefore convened and recommendations made for chemicals to fit three different sets of characteristics, namely: This paper therefore contains these three recommended lists of chemicals and describes how these should be used for any test-evaluation programme.
- Published
- 2008
- Full Text
- View/download PDF
24. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM Workshop.
- Author
-
Kirkland D, Pfuhler S, Tweats D, Aardema M, Corvi R, Darroudi F, Elhajouji A, Glatt H, Hastwell P, Hayashi M, Kasper P, Kirchner S, Lynch A, Marzin D, Maurici D, Meunier JR, Müller L, Nohynek G, Parry J, Parry E, Thybaud V, Tice R, van Benthem J, Vanparys P, and White P
- Subjects
- Animals, Cells, Cultured, False Positive Reactions, Humans, Models, Biological, Reagent Kits, Diagnostic, Tissue Culture Techniques, Mutagenicity Tests
- Abstract
Workshop participants agreed that genotoxicity tests in mammalian cells in vitro produce a remarkably high and unacceptable occurrence of irrelevant positive results (e.g. when compared with rodent carcinogenicity). As reported in several recent reviews, the rate of irrelevant positives (i.e. low specificity) for some studies using in vitro methods (when compared to this "gold standard") means that an increased number of test articles are subjected to additional in vivo genotoxicity testing, in many cases before, e.g. the efficacy (in the case of pharmaceuticals) of the compound has been evaluated. If in vitro tests were more predictive for in vivo genotoxicity and carcinogenicity (i.e. fewer false positives) then there would be a significant reduction in the number of animals used. Beyond animal (or human) carcinogenicity as the "gold standard", it is acknowledged that genotoxicity tests provide much information about cellular behaviour, cell division processes and cellular fate to a (geno)toxic insult. Since the disease impact of these effects is seldom known, and a verification of relevant toxicity is normally also the subject of (sub)chronic animal studies, the prediction of in vivo relevant results from in vitro genotoxicity tests is also important for aspects that may not have a direct impact on carcinogenesis as the ultimate endpoint of concern. In order to address the high rate of in vitro false positive results, a 2-day workshop was held at the European Centre for the Validation of Alternative Methods (ECVAM), Ispra, Italy in April 2006. More than 20 genotoxicity experts from academia, government and industry were invited to review data from the currently available cell systems, to discuss whether there exist cells and test systems that have a reduced tendency to false positive results, to review potential modifications to existing protocols and cell systems that might result in improved specificity, and to review the performance of some new test systems that show promise of improved specificity without sacrificing sensitivity. It was concluded that better guidance on the likely mechanisms resulting in positive results that are not biologically relevant for human health, and how to obtain evidence for those mechanisms, is needed both for practitioners and regulatory reviewers. Participants discussed the fact that cell lines commonly used for genotoxicity testing have a number of deficiencies that may contribute to the high false positive rate. These include, amongst others, lack of normal metabolism leading to reliance on exogenous metabolic activation systems (e.g. Aroclor-induced rat S9), impaired p53 function and altered DNA repair capability. The high concentrations of test chemicals (i.e. 10 mM or 5000 microg/ml, unless precluded by solubility or excessive toxicity) and the high levels of cytotoxicity currently required in mammalian cell genotoxicity tests were discussed as further potential sources of false positive results. Even if the goal is to detect carcinogens with short in vitro tests under more or less acute conditions, it does not seem logical to exceed the capabilities of cellular metabolic turnover, activation and defence processes. The concept of "promiscuous activation" was discussed. For numerous mutagens, the decisive in vivo enzymes are missing in vitro. However, if the substrate concentration is increased sufficiently, some other enzymes (that are unimportant in vivo) may take over the activation-leading to the same or a different active metabolite. Since we often do not use the right enzyme systems for positive controls in vitro, we have to rely on their promiscuous activation, i.e. to use excessive concentrations to get an empirical correlation between genotoxicity and carcinogenicity. A thorough review of published and industry data is urgently needed to determine whether the currently required limit concentration of 10mM or 5000 microg/ml, and high levels of cytotoxicity, are necessary for the detection of in vivo genotoxins and DNA-reactive, mutagenic carcinogens. In addition, various measures of cytotoxicity are currently allowable under OECD test guidelines, but there are few comparative data on whether different measures would result in different maximum concentrations for testing. A detailed comparison of cytotoxicity assessment strategies is needed. An assessment of whether test endpoints can be selected that are not intrinsically associated with cytotoxicity, and therefore are less susceptible to artefacts produced by cytotoxicity, should also be undertaken. There was agreement amongst the workshop participants that cell systems which are p53 and DNA-repair proficient, and have defined Phase 1 and Phase 2 metabolism, covering a broad set of enzyme forms, and used within the context of appropriately set limits of concentration and cytotoxicity, offer the best hope for reduced false positives. Whilst there is some evidence that human lymphocytes are less susceptible to false positives than the current rodent cell lines, other cell systems based on HepG2, TK6 and MCL-5 cells, as well as 3D skin models based on primary human keratinocytes also show some promise. Other human cell lines such as HepaRG, and human stem cells (the target for carcinogenicity) have not been used for genotoxicity investigations and should be considered for evaluation. Genetic engineering is also a valuable tool to incorporate missing enzyme systems into target cells. A collaborative research programme is needed to identify, further develop and evaluate new cell systems with appropriate sensitivity but improved specificity. In order to review current data for selection of appropriate top concentrations, measures and levels of cytotoxicity, metabolism, and to be able to improve existing or validate new assay systems, the participants called for the establishment of an expert group to identify the in vivo genotoxins and DNA-reactive, mutagenic carcinogens that we expect our in vitro genotoxicity assays to detect as well as the non-genotoxins and non-carcinogens we expect them not to detect.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.