3 results on '"Boris Papazov"'
Search Results
2. Neurofunctional differences and similarities between persistent postural-perceptual dizziness and anxiety disorder
- Author
-
Maximilian Maywald, Oliver Pogarell, Susanne Levai, Marco Paolini, Nadja Tschentscher, Boris Stephan Rauchmann, Daniela Krause, Sophia Stöcklein, Stephan Goerigk, Lukas Röll, Birgit Ertl-Wagner, Boris Papazov, Daniel Keeser, Susanne Karch, and Agnieszka Chrobok
- Subjects
fMRI ,Persistent postural-perceptual dizziness ,Somatoform dizziness ,Anxiety disorder ,Supramarginal gyrus ,Superior temporal gyrus ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Introduction: Persistent postural-perceptual dizziness (PPPD) (ICD-11) and anxiety disorders (ANX) share behavioural symptoms like anxiety, avoidance, social withdrawal, hyperarousal, or palpitation as well as neurological symptoms like vertigo, stance and gait disorders. Furthermore, previous studies have shown a bidirectional link between vestibulo-spatial and anxiety neural networks. So far, there have been no neuroimaging-studies comparing these groups. Objectives: The aim of this explorative study was to investigate differences and similarities of neural correlates between these two patient groups and to compare their findings with a healthy control group. Methods: 63 participants, divided in two patient groups (ANX = 20 and PPPD = 14) and two sex and age matched healthy control groups (HC-A = 16, HC-P = 13) were included. Anxiety and dizziness related pictures were shown during fMRI-measurements in a block-design in order to induce emotional responses. All subjects filled in questionnaires regarding vertigo (VSS, VHQ), anxiety (STAI), depression (BDI-II), alexithymia (TAS), and illness-perception (IPQ). After modelling the BOLD response with a standard canonical HRF, voxel-wise t-tests between conditions (emotional-negative vs neutral stimuli) were used to generate statistical contrast maps and identify relevant brain areas (pFDR 30 voxels). ROI-analyses were performed for amygdala, cingulate gyrus, hippocampus, inferior frontal gyrus, insula, supramarginal gyrus and thalamus (p ≤ 0.05). Results: Patient groups differed from both HC groups regarding anxiety, dizziness, depression and alexithymia scores; ratings of the PPPD group and the ANX group did differ significantly only in the VSS subscale ‘vertigo and related symptoms’ (VSS-VER). The PPPD group showed increased neural responses in the vestibulo-spatial network, especially in the supramarginal gyrus (SMG), and superior temporal gyrus (STG), compared to ANX and HC-P group. The PPPD group showed increased neural responses compared to the HC-P group in the anxiety network including amygdala, insula, lentiform gyrus, hippocampus, inferior frontal gyrus (IFG) and brainstem. Neuronal responses were enhanced in visual structures, e.g. fusiform gyrus, middle occipital gyrus, and in the medial orbitofrontal cortex (mOFC) in healthy controls compared to patients with ANX and PPPD, and in the ANX group compared to the PPPD group. Conclusions: These findings indicate that neuronal responses to emotional information in the PPPD and the ANX group are comparable in anxiety networks but not in vestibulo-spatial networks. Patients with PPPD revealed a stronger neuronal response especially in SMG and STG compared to the ANX and the HC group. These results might suggest higher sensitivity and poorer adaptation processes in the PPPD group to anxiety and dizziness related pictures. Stronger activation in visual processing areas in HC subjects might be due to less emotional and more visual processing strategies.
- Published
- 2023
- Full Text
- View/download PDF
3. Differences in electric field strength between clinical and non-clinical populations induced by prefrontal tDCS: A cross-diagnostic, individual MRI-based modeling study
- Author
-
Yuki Mizutani-Tiebel, Shun Takahashi, Temmuz Karali, Eva Mezger, Lucia Bulubas, Irina Papazova, Esther Dechantsreiter, Sophia Stoecklein, Boris Papazov, Axel Thielscher, Frank Padberg, and Daniel Keeser
- Subjects
Prefrontal tDCS ,Structural MRI ,Electric field ,Major depressive disorder ,Schizophrenia ,Dorsolateral prefrontal cortex ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Introduction: Prefrontal cortex (PFC) regions are promising targets for therapeutic applications of non-invasive brain stimulation, e.g. transcranial direct current stimulation (tDCS), which has been proposed as a novel intervention for major depressive disorder (MDD) and negative symptoms of schizophrenia (SCZ). However, the effects of tDCS vary inter-individually, and dose–response relationships have not been established. Stimulation parameters are often tested in healthy subjects and transferred to clinical populations. The current study investigates the variability of individual MRI-based electric fields (e-fields) of standard bifrontal tDCS across individual subjects and diagnoses. Method: The study included 74 subjects, i.e. 25 patients with MDD, 24 patients with SCZ, and 25 healthy controls (HC). Individual e-fields of a common tDCS protocol (i.e. 2 mA stimulation intensity, bifrontal anode-F3/cathode-F4 montage) were modeled by two investigators using SimNIBS (2.0.1) based on structural MRI scans. Result: On a whole-brain level, the average e-field strength was significantly reduced in MDD and SCZ compared to HC, but MDD and SCZ did not differ significantly. Regions of interest (ROI) analysis for PFC subregions showed reduced e-fields in Sallet areas 8B and 9 for MDD and SCZ compared to HC, whereas there was again no difference between MDD and SCZ. Within groups, we generally observed high inter-individual variability of e-field intensities at a higher percentile of voxels. Conclusion: MRI-based e-field modeling revealed significant differences in e-field strengths between clinical and non-clinical populations in addition to a general inter-individual variability. These findings support the notion that dose–response relationships for tDCS cannot be simply transferred from healthy to clinical cohorts and need to be individually established for clinical groups. In this respect, MRI-based e-field modeling may serve as a proxy for individualized dosing.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.