1. Inequalities between Littlewood–Richardson coefficients
- Author
-
Universidad de Sevilla. Departamento de álgebra, Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds Québécois de la Recherche sur la Nature et les Technologies, Bergeron, François, Biagioli, Riccardo, Rosas Celis, Mercedes Helena, Universidad de Sevilla. Departamento de álgebra, Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds Québécois de la Recherche sur la Nature et les Technologies, Bergeron, François, Biagioli, Riccardo, and Rosas Celis, Mercedes Helena
- Abstract
We prove that a conjecture of Fomin, Fulton, Li, and Poon, associated to ordered pairs of partitions, holds for many infinite families of such pairs. We also show that the bounded height case can be reduced to checking that the conjecture holds for a finite number of pairs, for any given height. Moreover, we propose a natural generalization of the conjecture to the case of skew shapes.
- Published
- 2006