1. Sensorimotor Rhythm BCI with Simultaneous High Definition-Transcranial Direct Current Stimulation Alters Task Performance.
- Author
-
Baxter BS, Edelman BJ, Nesbitt N, and He B
- Subjects
- Adolescent, Adult, Female, Humans, Male, Young Adult, Alpha Rhythm physiology, Beta Rhythm physiology, Brain-Computer Interfaces, Imagination physiology, Motor Activity physiology, Psychomotor Performance physiology, Sensorimotor Cortex physiology, Transcranial Direct Current Stimulation methods
- Abstract
Background: Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times., Objective: To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI., Methods: We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days., Results: We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials., Conclusion: These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation., (Copyright © 2016 Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF