1. Uptake and effects of 2, 4, 6 - trinitrotoluene (TNT) in juvenile Atlantic salmon (Salmo salar).
- Author
-
Mariussen E, Stornes SM, Bøifot KO, Rosseland BO, Salbu B, and Heier LS
- Subjects
- Animals, Environmental Biomarkers, Female, Male, Aniline Compounds analysis, Bile chemistry, Salmo salar metabolism, Trinitrotoluene metabolism, Water Pollutants, Chemical metabolism
- Abstract
Organ specific uptake and depuration, and biological effects in Atlantic salmon (Salmo salar) exposed to 2, 4, 6-trinitrotoluene (TNT) were studied. Two experiments were conducted, the first using radiolabeled TNT (
14 C-TNT, 0.16mg/L) to study uptake (48h) and depuration (48h), while the second experiment focused on physiological effects in fish exposed to increasing concentrations of unlabeled TNT (1μg-1mg/L) for 48h. The uptake of14 C-TNT in the gills and most of the organs increased rapidly during the first 6h of exposure (12h in the brain) followed by a rapid decrease even though the fish were still exposed to TNT in the water. The radioactivity in the gall bladder reached a maximum after 55h, 7h after the transfer to the clean water. A high concentration of14 C-TNT in the gall bladder indicates that TNT is excreted through the gall bladder. Mortality (2 out of 14) was observed at a concentration of 1mg/L, and the surviving fish had hemorrhages in the dorsal muscle tissue near the spine. Analysis of the physiological parameters in blood from the high exposure group revealed severe effects, with an increase in the levels of glucose, urea and HCO3 , and a decrease in hematocrit and the levels of Cl and hemoglobin. No effects on blood physiology were observed in fish exposed to the lower concentrations of TNT (1-100μg/L). TNT and the metabolites 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) were found in the muscle tissue, whereas only 2-ADNT and 4-ADNT were found in the bile. The rapid excretion and estimated bioconcentration factors (range of 2-18 after 48h in gills, blood, liver, kidney, muscle and brain) indicated a low potential for bioaccumulation of TNT., (Copyright © 2017 Elsevier B.V. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF