1. NRG Oncology and Particle Therapy Co-Operative Group Patterns of Practice Survey and Consensus Recommendations on Pencil-Beam Scanning Proton Stereotactic Body Radiation Therapy and Hypofractionated Radiation Therapy for Thoracic Malignancies.
- Author
-
Liu W, Feng H, Taylor PA, Kang M, Shen J, Saini J, Zhou J, Giap HB, Yu NY, Sio TS, Mohindra P, Chang JY, Bradley JD, Xiao Y, Simone CB 2nd, and Lin L
- Subjects
- Humans, Organs at Risk radiation effects, Radiation Oncology standards, Practice Patterns, Physicians', Radiotherapy Planning, Computer-Assisted methods, Radiotherapy, Image-Guided methods, United States, Tomography, X-Ray Computed, Lung Neoplasms radiotherapy, Lung Neoplasms diagnostic imaging, Proton Therapy methods, Radiosurgery methods, Radiation Dose Hypofractionation, Thoracic Neoplasms radiotherapy, Consensus
- Abstract
Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction. The NRG Oncology and Particle Therapy Cooperative Group Thoracic Subcommittee surveyed proton centers in the United States to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Among other points, the recommendations highlight the need for volumetric image guidance and multiple computed tomography-based robust optimization and robustness tools to minimize further the effect of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF