1. Channel estimation method for IRS assisted mine communication system based on self supervised learning
- Author
-
WANG Anyi, LI Xinyu, LI Mingzhu, and LI Ruoman
- Subjects
mine communication ,channel estimation ,underground intelligence reflecting surface ,self supervised learning ,octave convolution neural network ,nakagami-g model ,Mining engineering. Metallurgy ,TN1-997 - Abstract
A channel estimation method for intelligence reflecting surface (IRS) assisted mine communication system based on self supervised learning (SSL) is proposed to address the problems of multipath fading, non line of sight communication, and difficulty in obtaining true labels caused by complex mine environments. The method builds an underground communication system model based on the Nakagami-g fading channel model and IRS signal transmission model, and solves the problems of multipath fading and non line of sight communication through IRS technology. Preliminary channel estimation is performed using the least squares (LS) algorithm, and then the channel estimation results are optimized using octave convolution (OCT) neural network under the SSL framework. OCT directly processes both high-frequency and low-frequency components, capturing both the rough features and subtle differences of the channel, providing comprehensive channel information, and thus more accurately estimating the channel state. The SSL algorithm uses received signals and their noisy versions as training data to improve the precision and efficiency of IRS assisted channel estimation through the intrinsic structure of unlabeled data, thereby reducing reliance on manual labeling. The simulation results show the following points. ① Introducing IRS technology can effectively reduce channel estimation errors. ② The loss value of OCT neural network is significantly lower than that of CNN, and the data fitting effect is better. OCT neural network has high computational efficiency and can improve the overall performance of channel estimation in communication systems. In environments with limited computing resources, OCT neural networks can maintain low parameter and memory usage. ③ The SSL algorithm can maintain a low normalized mean square error under all signal-to-noise ratio conditions, verifying its efficiency and robustness in channel estimation. ④ The channel estimation method for IRS assisted mine communication system based on SSL has good scalability and robustness in large-scale networks.
- Published
- 2024
- Full Text
- View/download PDF