1. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes
- Author
-
Mulvey JJ, Feinberg EN, Alidori S, McDevitt MR, Heller DA, and Scheinberg DA
- Subjects
Medicine (General) ,R5-920 - Abstract
J Justin Mulvey,1,2 Evan N Feinberg,1,3 Simone Alidori,1 Michael R McDevitt,4,5 Daniel A Heller,1,6 David A Scheinberg1,5,6 1Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA; 2Tri-Institutional MD-PhD Program, New York, NY, USA; 3Department of Applied Physics, Yale University, New Haven, CT USA; 4Department of Radiology and 5Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; 6Weill Cornell Medical College, New York, NY, USA Abstract: We aimed to create a more robust and more accessible standard for amine-modifying single-walled carbon nanotubes (SWCNTs). A 1,3-cycloaddition was developed using an azomethine ylide, generated by reacting paraformaldehyde and a side-chain-Boc (tert-Butyloxycarbonyl)-protected, lysine-derived alpha-amino acid, H-Lys(Boc)-OH, with purified SWCNT or C60. This cycloaddition and its lysine adduct provides the benefits of dense, covalent modification, ease of purification, commercial availability of reagents, and pH-dependent solubility of the product. Subsequently, SWCNTs functionalized with lysine amine handles were covalently conjugated to a radiometalated chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The 111In-labeled construct showed rapid renal clearance in a murine model and a favorable biodistribution, permitting utility in biomedical applications. Functionalized SWCNTs strongly wrapped small interfering RNA (siRNA). In the first disclosed deployment of thermophoresis with carbon nanotubes, the lysine-modified tubes showed a desirable, weak SWCNT-albumin binding constant. Thus, lysine-modified nanotubes are a favorable candidate for medicinal work. Keywords: fullerene, cycloaddition, azomethine, DOTA, thermophoresis, 111In
- Published
- 2014