Salinity is one of the major stresses that limits crop production worldwide and affects most physiological activities in plants. In order to study the genetic control of salt stress in the model legume Medicago truncatula Gaertn., an experiment was undertaken to determine the genetic variability and to identify quantitative trait loci (QTLs) controlling several traits related to plant growth and physiology in a population of recombinant inbred lines. Shoot and root DW, relative water content, leaf area, chlorophyll content, chlorophyll fluorescence parameters, and Na+ and K+ in shoots and roots were measured. The experiment was carried out with three replications. ANOVA showed a large genetic variation and transgressive segregation for the traits studied, suggesting putative complex tolerance mechanisms. A total of 21 QTLs were detected under control conditions and 19 QTLs were identified under 100mm salt stress conditions, with three QTLs being common to both situations. The percentage of total phenotypic variance explained by the QTLs ranged from 4.6% to 23.01%. Overlapping QTLs for different traits were also observed, which enables us to discriminate independent traits from linked ones. The results should be helpful information for further functional analysis of salt tolerance in M. truncatula.