1. CO2 and CH4 budgets and global warming potential modifications in Sphagnum-dominated peat mesocosms invaded by Molinia caerulea
- Author
-
F. Leroy, S. Gogo, C. Guimbaud, L. Bernard-Jannin, X. Yin, G. Belot, W. Shuguang, and F. Laggoun-Défarge
- Subjects
Ecology ,QH540-549.5 ,Life ,QH501-531 ,Geology ,QE1-996.5 - Abstract
Plant communities play a key role in regulating greenhouse gas (GHG) emissions in peatland ecosystems and therefore in their ability to act as carbon (C) sinks. However, in response to global change, a shift from Sphagnum-dominated to vascular-plant-dominated peatlands may occur, with a potential alteration in their C-sink function. To investigate how the main GHG fluxes (CO2 and CH4) are affected by a plant community change (shift from dominance of Sphagnum mosses to vascular plants, i.e., Molinia caerulea), a mesocosm experiment was set up. Gross primary production (GPP), ecosystem respiration (ER) and CH4 emission models were used to estimate the annual C balance and global warming potential under both vegetation covers. While the ER and CH4 emission models estimated an output of, respectively, 376±108 and 7±4 g C m−2 yr−1 in Sphagnum mesocosms, this reached 1018±362 and 33±8 g C m−2 yr−1 in mesocosms with Sphagnum rubellum and Molinia caerulea. Annual modeled GPP was estimated at -414±122 and -1273±482 g C m−2 yr−1 in Sphagnum and Sphagnum + Molinia plots, respectively, leading to an annual CO2 and CH4 budget of −30 g C m−2 yr−1 in Sphagnum plots and of −223 g C m−2 yr−1 in Sphagnum + Molinia ones (i.e., a C sink). Even if CH4 emissions accounted for a small part of the gaseous C efflux (ca. 3 %), their global warming potential value makes both plant communities have a climate warming effect. The shift of vegetation from Sphagnum mosses to Molinia caerulea seems beneficial for C sequestration at a gaseous level. However, roots and litter of Molinia caerulea could provide substrates for C emissions that were not taken into account in the short measurement period studied here.
- Published
- 2019
- Full Text
- View/download PDF