1. Classification and susceptibility assessment of debris flow based on a semi-quantitative method combining of the fuzzy C-means algorithm, factor analysis and efficacy coefficient
- Author
-
Liang, Zhu, Wang, Changming, Han, Songling, Ullah Jan Khan, Kaleem, and Liu, Yiao
- Abstract
The existence of debris flows not only destroys the facilities, but also seriously threatens human lives, especially in scenic areas. Therefore, the classification and susceptibility analysis of debris flow are particularly important. In this paper, 21 debris flow catchments located in Huangsongyu town ship, Pinggu District of Beijing, China were investigated. Besides field investigation, geographic information system, global positioning system and remote sensing technology were applied to determine the characteristics of debris flows. This article introduced clustering validity index to determine the clustering number, and the fuzzy C-means algorithm and factor analysis method were combined to classify 21 debris flow catchments in the study area. The results were divided into four types: scale-topography-human activity closely related, topography-human activity-matter source closely related, scale-matter source-geology closely related and topography-scale-matter source-human activity closely related debris flow. And 9 major factors screened from the classification result were selected for susceptibility analysis, using both the efficacy coefficient method and the combination weighting. Susceptibility results showed that the susceptibility of 2 debris flows catchments were high, 6 were moderate, and 13 were low. The assessment results were consistent with the field investigation. Finally, a comprehensive assessment including classification and susceptibility evaluation of debris flow was obtained, which was useful for risk mitigation and land use planning in the study area, and provided reference for the research on related issues in other areas.
- Published
- 2020