1. N2O fluxes from the littoral zone of a Chinese reservoir.
- Author
-
Yang, M., Geng, X. M., Grace, J., Jia, Y. F., Liu, Y. Z., Jiao, S. W., Shi, L. L., Lu, C., Zhou, Y., and Lei, G. C.
- Subjects
RESERVOIRS ,LITTORAL zone ,GREENHOUSE gases ,SPATIAL variation ,ATMOSPHERIC temperature ,NITRATES ,SOIL composition - Abstract
There have been few studies of greenhouse gas emissions from reservoirs, despite the remarkable growth in the number of reservoirs in developing countries. We report a case study that focuses on the littoral zone of a major Chinese reservoir, where we established measurements of N
2 O fluxes using the static chamber technique at five different water levels (deep water, shallow water, seasonally flooded, control for seasonally flooded, and non-flooded). The "control for seasonal flooded" had similar vegetation to the "seasonally flooded" but was not actually flooded as it was on a higher piece of land. Seasonal, diurnal and spatial variations of N2 O flux and environmental factors were monitored throughout the growing season which included a flood event during summer rains. The N2O flux ranged from -136.6 to 381.8 μgm-2 h-1 averaging 6.8 μgm-2 h-1 . Seasonal and spatial variation was significant but diurnal variation was not. Non-flooded dry land emitted more N2 O than flooded land, no matter whether it was permanently or seasonally flooded. Piecewise correlation was found between N2 O flux, air temperature and soil nitrate concentration. Positive correlation was shown between N2 O flux and dissolved oxygen in water. There were significantly higher emissions from farmland. We compared these results with our recently published study of CH4 emissions, carried out simultaneously at the same site as those in the present study. Completely different patterns between the two gases are demonstrated. We conclude that the littoral zone is a hotspot for N2 O emissions in the summer, especially when the shores of the lake are used for the farming of maize. But in terms of the overall greenhouse gas budget, the fluxes of N2 O are not as important as those of CH4 . [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF