1. Microtubule stabilizer reveals requirement of Ca 2+ -dependent conformational changes of microtubules for rapid coiling of haptonema in haptophyte algae.
- Author
-
Nomura M, Atsuji K, Hirose K, Shiba K, Yanase R, Nakayama T, Ishida KI, and Inaba K
- Abstract
A haptonema is an elongated microtubule-based motile organelle uniquely present in haptophytes. The most notable and rapid movement of a haptonema is 'coiling', which occurs within a few milliseconds following mechanical stimulation in an unknown motor-independent mechanism. Here, we analyzed the coiling process in detail by high-speed filming and showed that haptonema coiling was initiated by left-handed twisting of the haptonema, followed by writhing to form a helix from the distal tip. On recovery from a mechanical stimulus, the helix slowly uncoiled from the proximal region. Electron microscopy showed that the seven microtubules in a haptonema were arranged mostly in parallel but that one of the microtubules often wound around the others in the extended state. A microtubule stabilizer, paclitaxel, inhibited coiling and induced right-handed twisting of the haptonema in the absence of Ca
2+ , suggesting changes in the mechanical properties of microtubules. Addition of Ca2+ resulted in the conversion of haptonematal twist into the planar bends near the proximal region. These results indicate that switching microtubule conformation, possibly with the aid of Ca2+ -binding microtubule-associated proteins is responsible for rapid haptonematal coiling., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2019. Published by The Company of Biologists Ltd.)- Published
- 2019
- Full Text
- View/download PDF