7 results on '"Adey, Andrew"'
Search Results
2. Atlas-scale single-cell chromatin accessibility using nanowell-based combinatorial indexing.
- Author
-
O'Connell BL, Nichols RV, Pokholok D, Thomas J, Acharya SN, Nishida A, Thornton CA, Co M, Fields AJ, Steemers FJ, and Adey AC
- Subjects
- Mice, Animals, Neurons metabolism, Epigenomics methods, Single-Cell Analysis methods, Chromatin, Transposases metabolism
- Abstract
Here we present advancements in single-cell combinatorial indexed Assay for Transposase Accessible Chromatin (sciATAC) to measure chromatin accessibility that leverage nanowell chips to achieve atlas-scale cell throughput (>10
5 cells) at low cost. The platform leverages the core of the sciATAC workflow where multiple indexed tagmentation reactions are performed, followed by pooling and distribution to a second set of reaction wells for polymerase chain reaction (PCR)-based indexing. In this work, we instead leverage a chip containing 5184 nanowells at the PCR stage of indexing, enabling a 52-fold improvement in scale and reduction in per-cell preparation costs. We detail three variants that balance cell throughput and depth of coverage, and apply these methods to banked mouse brain tissue, producing maps of cell types as well as neuronal subtypes that include integration with existing single-cell Assay for Transposase Accessible Chromatin (scATAC) and scRNA-seq data sets. Our optimized workflow achieves a high fraction of reads that fall within called peaks (>80%) and low cell doublet rates. The high cell coverage technique produces high unique reads per cell, while retaining high enrichment for open chromatin regions, enabling the assessment of >70,000 unique accessible loci on average for each cell profiled. When compared to current methods in the field, our technique provides similar or superior per-cell information with very low levels of cell-to-cell cross talk, and achieves this at a cost point much lower than existing assays., (© 2023 O'Connell et al.; Published by Cold Spring Harbor Laboratory Press.)- Published
- 2023
- Full Text
- View/download PDF
3. Tagmentation-based single-cell genomics.
- Author
-
Adey AC
- Subjects
- DNA genetics, Genomics, High-Throughput Nucleotide Sequencing methods, Single-Cell Analysis, Transposases genetics
- Abstract
It has been just over 10 years since the initial description of transposase-based methods to prepare high-throughput sequencing libraries, or "tagmentation," in which a hyperactive transposase is used to simultaneously fragment target DNA and append universal adapter sequences. Tagmentation effectively replaced a series of processing steps in traditional workflows with one single reaction. It is the simplicity, coupled with the high efficiency of tagmentation, that has made it a favored means of sequencing library construction and fueled a diverse range of adaptations to assay a variety of molecular properties. In recent years, this has been centered in the single-cell space with a catalog of tagmentation-based assays that have been developed, covering a substantial swath of the regulatory landscape. To date, there have been a number of excellent reviews on single-cell technologies structured around the molecular properties that can be profiled. This review is instead framed around the central components and properties of tagmentation and how they have enabled the development of innovative molecular tools to probe the regulatory landscape of single cells. Furthermore, the granular specifics on cell throughput or richness of data provided by the extensive list of individual technologies are not discussed. Such metrics are rapidly changing and highly sample specific and are better left to studies that directly compare technologies for assays against one another in a rigorously controlled framework. The hope for this review is that, in laying out the diversity of molecular techniques at each stage of these assay platforms, new ideas may arise for others to pursue that will further advance the field of single-cell genomics., (© 2021 Adey; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2021
- Full Text
- View/download PDF
4. The accessible chromatin landscape of the murine hippocampus at single-cell resolution.
- Author
-
Sinnamon JR, Torkenczy KA, Linhoff MW, Vitak SA, Mulqueen RM, Pliner HA, Trapnell C, Steemers FJ, Mandel G, and Adey AC
- Subjects
- Animals, Cell Lineage genetics, Cell Nucleus genetics, Cell Nucleus metabolism, Cells, Cultured, Chromatin metabolism, Epigenomics methods, Mice, Neuronal Plasticity genetics, Pyramidal Cells cytology, Sequence Analysis, DNA, Single-Cell Analysis methods, Transposases genetics, Transposases metabolism, Chromatin genetics, Hippocampus metabolism, Pyramidal Cells metabolism
- Abstract
Here we present a comprehensive map of the accessible chromatin landscape of the mouse hippocampus at single-cell resolution. Substantial advances of this work include the optimization of a single-cell combinatorial indexing assay for transposase accessible chromatin (sci-ATAC-seq); a software suite, scitools , for the rapid processing and visualization of single-cell combinatorial indexing data sets; and a valuable resource of hippocampal regulatory networks at single-cell resolution. We used sci-ATAC-seq to produce 2346 high-quality single-cell chromatin accessibility maps with a mean unique read count per cell of 29,201 from both fresh and frozen hippocampi, observing little difference in accessibility patterns between the preparations. By using this data set, we identified eight distinct major clusters of cells representing both neuronal and nonneuronal cell types and characterized the driving regulatory factors and differentially accessible loci that define each cluster. Within pyramidal neurons, we identified four major clusters, including CA1 and CA3 neurons, and three additional subclusters. We then applied a recently described coaccessibility framework, Cicero, which identified 146,818 links between promoters and putative distal regulatory DNA. Identified coaccessibility networks showed cell-type specificity, shedding light on key dynamic loci that reconfigure to specify hippocampal cell lineages. Lastly, we performed an additional sci-ATAC-seq preparation from cultured hippocampal neurons (899 high-quality cells, 43,532 mean unique reads) that revealed substantial alterations in their epigenetic landscape compared with nuclei from hippocampal tissue. This data set and accompanying analysis tools provide a new resource that can guide subsequent studies of the hippocampus., (© 2019 Sinnamon et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2019
- Full Text
- View/download PDF
5. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion.
- Author
-
Daughtry BL, Rosenkrantz JL, Lazar NH, Fei SS, Redmayne N, Torkenczy KA, Adey A, Yan M, Gao L, Park B, Nevonen KA, Carbone L, and Chavez SL
- Subjects
- Animals, Chromosome Segregation, Chromosomes genetics, DNA Breaks, Double-Stranded, Female, Macaca, Single-Cell Analysis, Aneuploidy, Blastocyst cytology, Blastomeres cytology, Micronuclei, Chromosome-Defective embryology
- Abstract
Aneuploidy that arises during meiosis and/or mitosis is a major contributor to early embryo loss. We previously showed that human preimplantation embryos encapsulate missegregated chromosomes into micronuclei while undergoing cellular fragmentation and that fragments can contain chromosomal material, but the source of this DNA was unknown. Here, we leveraged the use of a nonhuman primate model and single-cell DNA-sequencing (scDNA-seq) to examine the chromosomal content of 471 individual samples comprising 254 blastomeres, 42 polar bodies, and 175 cellular fragments from a large number ( N = 50) of disassembled rhesus cleavage-stage embryos. Our analysis revealed that the aneuploidy and micronucleation frequency is conserved between humans and macaques, and that fragments encapsulate whole and/or partial chromosomes lost from blastomeres. Single-cell/fragment genotyping showed that these chromosome-containing cellular fragments (CCFs) can be maternally or paternally derived and display double-stranded DNA breaks. DNA breakage was further indicated by reciprocal subchromosomal losses/gains between blastomeres and large segmental errors primarily detected at the terminal ends of chromosomes. By combining time-lapse imaging with scDNA-seq, we determined that multipolar divisions at the zygote or two-cell stage were associated with CCFs and generated a random mixture of chromosomally normal and abnormal blastomeres with uniparental or biparental origins. Despite frequent chromosome missegregation at the cleavage-stage, we show that CCFs and nondividing aneuploid blastomeres showing extensive DNA damage are prevented from incorporation into blastocysts. These findings suggest that embryos respond to chromosomal errors by encapsulation into micronuclei, elimination via cellular fragmentation, and selection against highly aneuploid blastomeres to overcome chromosome instability during preimplantation development., (© 2019 Daughtry et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2019
- Full Text
- View/download PDF
6. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals.
- Author
-
Su Y, Pelz C, Huang T, Torkenczy K, Wang X, Cherry A, Daniel CJ, Liang J, Nan X, Dai MS, Adey A, Impey S, and Sears RC
- Subjects
- Animals, Cell Line, Cells, Cultured, Chromatin metabolism, Humans, Mice, Mice, Knockout, Mitogens pharmacology, NIMA-Interacting Peptidylprolyl Isomerase genetics, NIMA-Interacting Peptidylprolyl Isomerase metabolism, Phosphorylation, Proto-Oncogene Proteins c-myc chemistry, Serine metabolism, Wound Healing, p300-CBP Transcription Factors metabolism, Nuclear Pore metabolism, Protein Processing, Post-Translational, Proto-Oncogene Proteins c-myc metabolism, Transcriptional Activation
- Abstract
The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states., (© 2018 Su et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2018
- Full Text
- View/download PDF
7. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity.
- Author
-
Adey A, Kitzman JO, Burton JN, Daza R, Kumar A, Christiansen L, Ronaghi M, Amini S, Gunderson KL, Steemers FJ, and Shendure J
- Subjects
- Animals, Computational Biology methods, Gene Library, Genomics methods, Humans, Mice, Software, High-Throughput Nucleotide Sequencing methods, Transposases metabolism
- Abstract
We describe a method that exploits contiguity preserving transposase sequencing (CPT-seq) to facilitate the scaffolding of de novo genome assemblies. CPT-seq is an entirely in vitro means of generating libraries comprised of 9216 indexed pools, each of which contains thousands of sparsely sequenced long fragments ranging from 5 kilobases to > 1 megabase. These pools are "subhaploid," in that the lengths of fragments contained in each pool sums to ∼5% to 10% of the full genome. The scaffolding approach described here, termed fragScaff, leverages coincidences between the content of different pools as a source of contiguity information. Specifically, CPT-seq data is mapped to a de novo genome assembly, followed by the identification of pairs of contigs or scaffolds whose ends disproportionately co-occur in the same indexed pools, consistent with true adjacency in the genome. Such candidate "joins" are used to construct a graph, which is then resolved by a minimum spanning tree. As a proof-of-concept, we apply CPT-seq and fragScaff to substantially boost the contiguity of de novo assemblies of the human, mouse, and fly genomes, increasing the scaffold N50 of de novo assemblies by eight- to 57-fold with high accuracy. We also demonstrate that fragScaff is complementary to Hi-C-based contact probability maps, providing midrange contiguity to support robust, accurate chromosome-scale de novo genome assemblies without the need for laborious in vivo cloning steps. Finally, we demonstrate CPT-seq as a means of anchoring unplaced novel human contigs to the reference genome as well as for detecting misassembled sequences., (© 2014 Adey et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.