1. RNA sensing via LGP2 is essential for the induction of a type I IFN response in ADAR1 deficiency
- Author
-
Dennis Gravekamp, Caetano Reis e Sousa, Timo Oosenbrug, Jorn E. Stok, Santiago Zelenay, Laurens R. ter Haar, Annemarthe G. van der Veen, and Christian P. Bromley
- Subjects
Innate immune system ,Interferon ,RNA editing ,LGP2 ,medicine ,RNA ,MDA5 ,Biology ,Receptor ,Autoinflammatory Syndrome ,medicine.drug ,Cell biology - Abstract
RNA editing by the enzyme Adenosine Deaminase Acting on RNA 1 (ADAR1) is an important mechanism by which cells avoid innate immune responses to some endogenous RNAs. In ADAR1-deficient cells, unedited self RNAs can form base-paired structures that resemble viral RNAs and inadvertently activate antiviral innate immune pathways that lead to the induction of type I interferon (IFN). Rare mutations in ADAR1 cause Aicardi-Goutières Syndrome (AGS), a severe childhood autoinflammatory syndrome that is characterized by chronic and excessive type I IFN production and developmental delay. Conversely, ADAR1 dysfunction and consequent type I IFN production helps restrict tumor growth and potentiates the activity of some chemotherapy drugs. Induction of type I IFN in ADAR1-deficient cells is thought to be due to triggering of the cytosolic RIG-I-like receptor (RLR), MDA5, by unedited self RNAs. Here, we show that another RLR, LGP2, also has an essential role. We demonstrate that ADAR1-deficient human cells fail to mount a type I IFN response in the absence of LGP2 and this involves the canonical function of LGP2 as an RNA sensor and facilitator of MDA5-dependent signaling. Further, we show that the sensitivity of tumor cells to ADAR1 loss requires the presence of LGP2. Finally, we find that type I IFN induction in tumor cells depleted of ADAR1 and treated with some chemotherapeutics is fully dependent on the expression of LGP2. These findings highlight a central role for LGP2 in self RNA sensing with important clinical implications for the treatment of AGS as well as for the potential application of ADAR1-directed anti-tumor therapy.
- Published
- 2021
- Full Text
- View/download PDF