1. The cellular characterisation of SARS-CoV-2 spike protein in virus-infected cells using Receptor Binding Domain-binding specific human monoclonal antibodies
- Author
-
Conrad En-Zuo Chan, Ching-Ging Ng, Angeline Pei-Chew Lim, Shirley Lay-Kheng Seah, De-Hoe Chye, Steven Ka-Khuen Wong, Jie-Hui Lim, Vanessa Zi-Yun Lim, Soak-Kuan Lai, Pui-San Wong, Kok-Mun Leong, Yi-Chun Liu, Richard J Sugrue, and Boon-Huan Tan
- Abstract
A human monoclonal antibody panel (PD4, PD5, PD7, SC23 and SC29) was isolated from the B cells of convalescent patients and used to examine the S protein in SARS-CoV-2- infected cells. While all five antibodies bound conformational-specific epitopes within SARS-CoV-2 Spike (S) protein, only PD5, PD7, and SC23 were able to bind to the Receptor Binding Domain (RBD). Immunofluorescence microscopy was used to examine the S protein RBD in cells infected with the Singapore isolates SARS-CoV-2/0334 and SARS-CoV-2/1302. The RBD-binders exhibited a distinct cytoplasmic staining pattern that was primarily localised within the Golgi complex and was distinct from the diffuse cytoplasmic staining pattern exhibited by the non-RBD binders (PD4 and SC29). These data indicated that the S protein adopted a conformation in the Golgi complex that enabled the RBD recognition by the RBD-binders. The RBD-binders also recognised the uncleaved S protein indicating that S protein cleavage was not required for RBD recognition. Electron microscopy indicated high levels of cell-associated virus particles, and multiple cycle virus infection using RBD-binder staining provided evidence for direct cell-to-cell transmission for both isolates. Although similar levels of RBD-binder staining was demonstrated for each isolate, the SARS-CoV-2/1302 exhibited slower rates of cell-to-cell transmission. These data suggest that a conformational change in the S protein occurs during its transit through the Golgi complex that enables RBD recognition by the RBD-binders, and suggests that these antibodies can be used to monitor S protein RBD formation during the early stages of infection.ImportanceThe SARS CoV-2 spike (S) protein receptor binding domain (RBD) mediates the attachment of SARS CoV-2 to the host cell. This interaction plays an essential role in initiating virus infection and the S protein RBD is therefore a focus of therapeutic and vaccine interventions. However, new virus variants have emerged with altered biological properties in the RBD that can potentially negate these interventions. Therefore an improved understanding of the biological properties of the RBD in virus-infected cells may offer future therapeutic strategies to mitigate SARS CoV-2 infection. We used physiologically relevant antibodies that were isolated from the B cells of convalescent COVID19 patients to monitor the RBD in cells infected with SARS CoV-2 clinical isolates. These immunological reagents specifically recognise the correctly folded RBD and were used to monitor the appearance of the RBD in SARS CoV-2-infected cells and identified the site where the RDB first appears.
- Published
- 2021
- Full Text
- View/download PDF