1. HOPMA: Boosting protein functional dynamics with colored contact maps
- Author
-
Sergei Grudinin, Elodie Laine, Biologie Computationnelle et Quantitative = Laboratory of Computational and Quantitative Biology (LCQB), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Données, Apprentissage et Optimisation (DAO), Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Grudinin, Sergei, Algorithms for Modeling and Simulation of Nanosystems (NANO-D), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
Models, Molecular ,Boosting (machine learning) ,Macromolecular Substances ,Protein Conformation ,Computer science ,Structure (category theory) ,Crystallography, X-Ray ,010402 general chemistry ,Topology ,01 natural sciences ,Set (abstract data type) ,03 medical and health sciences ,Protein structure ,Normal mode ,0103 physical sciences ,Materials Chemistry ,Physical and Theoretical Chemistry ,[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM] ,030304 developmental biology ,0303 health sciences ,010304 chemical physics ,Functional protein ,Proteins ,A protein ,Function (mathematics) ,Protein structure prediction ,0104 chemical sciences ,Surfaces, Coatings and Films ,Nonlinear system ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Macromolecule - Abstract
In light of the recent very rapid progress in protein structure prediction, accessing the multitude of functional protein states is becoming more central than ever before. Indeed, proteins are flexible macromolecules, and they often perform their function by switching between different conformations. However, high-resolution experimental techniques such as X-ray crystallography and cryogenic electron microscopy can catch relatively few protein functional states. Many others are only accessible under physiological conditions in solution. Therefore, there is a pressing need to fill this gap with computational approaches.We present HOPMA, a novel method to predict protein functional states and transitions using a modified elastic network model. The method exploits patterns in a protein contact map, taking its 3D structure as input, and excludes some disconnected patches from the elastic network. Combined with nonlinear normal mode analysis, this strategy boosts the protein conformational space exploration, especially when the input structure is highly constrained, as we demonstrate on a set of more than 400 transitions. Our results let us envision the discovery of new functional conformations, which were unreachable previously, starting from the experimentally known protein structures.The method is computationally efficient and available at https://github.com/elolaine/HOPMA and https://team.inria.fr/nano-d/software/nolb-normal-modes.
- Published
- 2021
- Full Text
- View/download PDF