1. VLX-Stories: a semantically linked event platform for media publishers
- Author
-
Fernández Cañellas, Dèlia, Espadaler, Joan, Garolera, Blai, Rodríguez, David, Canet, Gemma, Colom, Aleix, Rimmek, Joan Marco, Giró Nieto, Xavier, Bou Balust, Elisenda, Riveiro, Juan Carlos, Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, and Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
- Subjects
Knowledge graph ,Linked data ,Machine learning ,Aprenentatge automàtic ,Dades enllaçades ,Deep learning ,Event representation ,Informàtica::Intel·ligència artificial [Àrees temàtiques de la UPC] ,Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo [Àrees temàtiques de la UPC] ,Aprenentatge profund - Abstract
In the recent years, video sharing in social media from different video recording devices has resulted in a exponential growth of videos on the Internet. Such video data is continuously increasing with daily recordings related to a wide number of topics. In this context, video understanding has become a critical problem to address. Video search and indexation benefits from the use of keyword tags related to the video content, but most of the shared video content does not contain these tags. Although the use of deep learning has become essential for image analysis in several areas, video domain is still a relatively unexplored field for these type of methods. On the other hand knowledge graphs as Freebase or WordNet store high quantities of information about the word and relations that can be used to disambiguate concepts and relate them through contextual information In this research project we search to explore and improve the understanding of video content through the use of automatic tagging models based on Machine Learning and Deep Learning techniques, improved by the use of knowledge bases.
- Published
- 2019