1. Characterizing transactional databases for frequent itemset mining
- Author
-
Lezcano Ríos, Christian Gerardo, Arias Vicente, Marta, Universitat Politècnica de Catalunya. Doctorat en Computació, Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, and Universitat Politècnica de Catalunya. LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge
- Subjects
Bases de dades ,Databases ,Transactional databases ,Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC] ,Machine learning ,Aprenentatge automàtic ,Frequent itemset mining ,Mineria de dades ,Data mining ,Data characterization - Abstract
This paper presents a study of the characteristics of transactional databases used in frequent itemset mining. Such characterizations have typically been used to benchmark and understand the data mining algorithms working on these databases. The aim of our study is to give a picture of how diverse and representative these benchmarking databases are, both in general but also in the context of particular empirical studies found in the literature. Our proposed list of metrics contains many of the existing metrics found in the literature, as well as new ones. Our study shows that our list of metrics is able to capture much of the datasets’ inner complexity and thus provides a good basis for the characterization of transactional datasets. Finally, we provide a set of representative datasets based on our characterization that may be used as a benchmark safely. Both authors have been partially supported by TIN2017-89244-R from MINECO (Spain’s Ministerio de Economia, Industria y Competitividad) and the recognition 2017SGR-856 (MACDA) from AGAUR (Generalitat de Catalunya). Christian Lezcano is supported by Paraguay’s Foreign Postgraduate Scholarship Programme Don Carlos Antonio López (BECAL).
- Published
- 2019