1. Pronuclear Microinjection during S-Phase Increases the Efficiency of CRISPR-Cas9-Assisted Knockin of Large DNA Donors in Mouse Zygotes.
- Author
-
Abe T, Inoue KI, Furuta Y, and Kiyonari H
- Subjects
- Animals, Mice, Mice, Knockout, CRISPR-Cas Systems genetics, DNA genetics, S Phase genetics, Zygote metabolism
- Abstract
In CRISPR-Cas9-assisted knockin (KI) in zygotes, a remaining challenge is routinely achieving high-efficiency KI of large (kilobase-sized) DNA elements. Here, we focus on the timing of pronuclear injection and establish a reliable homologous recombination (HR)-based method to generate large KIs in zygotes compared with two other types of KI strategies involving distinct DNA repair pathways. At the ROSA26 locus, pronuclear injection with CRISPR RNA (crRNA), trans-activating crRNA (tracrRNA), and Cas9 protein at the S phase by using the HR-based method yields the most efficient and accurate KIs (up to 70%). This approach is also generally effective for generating large KI alleles at other gene loci. We further apply our method to efficiently obtain biallelic ROSA26 KIs by sequential injection into both pronuclei. Our results suggest that delivery of genome editing components and donor DNA into S-phase zygotes is critical for efficient KI of large DNA elements., Competing Interests: Declaration of Interests The authors declare no conflicts of interest associated with this manuscript., (Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF