1. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling.
- Author
-
Xian H, Watari K, Sanchez-Lopez E, Offenberger J, Onyuru J, Sampath H, Ying W, Hoffman HM, Shadel GS, and Karin M
- Subjects
- Animals, DNA, Mitochondrial metabolism, Interferons metabolism, Mice, Mitochondria metabolism, Mitochondrial Permeability Transition Pore, Nucleotidyltransferases metabolism, Inflammasomes metabolism, NLR Family, Pyrin Domain-Containing 3 Protein metabolism
- Abstract
Mitochondrial DNA (mtDNA) escaping stressed mitochondria provokes inflammation via cGAS-STING pathway activation and, when oxidized (Ox-mtDNA), it binds cytosolic NLRP3, thereby triggering inflammasome activation. However, it is unknown how and in which form Ox-mtDNA exits stressed mitochondria in non-apoptotic macrophages. We found that diverse NLRP3 inflammasome activators rapidly stimulated uniporter-mediated calcium uptake to open mitochondrial permeability transition pores (mPTP) and trigger VDAC oligomerization. This occurred independently of mtDNA or reactive oxygen species, which induce Ox-mtDNA generation. Within mitochondria, Ox-mtDNA was either repaired by DNA glycosylase OGG1 or cleaved by the endonuclease FEN1 to 500-650 bp fragments that exited mitochondria via mPTP- and VDAC-dependent channels to initiate cytosolic NLRP3 inflammasome activation. Ox-mtDNA fragments also activated cGAS-STING signaling and gave rise to pro-inflammatory extracellular DNA. Understanding this process will advance the development of potential treatments for chronic inflammatory diseases, exemplified by FEN1 inhibitors that suppressed interleukin-1β (IL-1β) production and mtDNA release in mice., Competing Interests: Declaration of interests M.K. is a founder of Elgia Pharmaceuticals, a member of its scientific advisory board, and received research support from Gossamer Bio, Jansen Pharmaceuticals, and Merck. UCSD is in the process of applying for a patent covering the generation and use of novel anti-inflammatory therapy for ARDS listing H.X., E.S.-L., and M.K. as inventors., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF