1. Norm-based coding of voice identity in human auditory cortex.
- Author
-
Latinus M, McAleer P, Bestelmeyer PE, and Belin P
- Subjects
- Acoustic Stimulation, Acoustics, Brain Mapping, Female, Humans, Magnetic Resonance Imaging, Male, Voice physiology, Auditory Cortex physiology, Auditory Perception physiology, Pattern Recognition, Physiological, Speech Acoustics
- Abstract
Listeners exploit small interindividual variations around a generic acoustical structure to discriminate and identify individuals from their voice-a key requirement for social interactions. The human brain contains temporal voice areas (TVA) involved in an acoustic-based representation of voice identity, but the underlying coding mechanisms remain unknown. Indirect evidence suggests that identity representation in these areas could rely on a norm-based coding mechanism. Here, we show by using fMRI that voice identity is coded in the TVA as a function of acoustical distance to two internal voice prototypes (one male, one female)-approximated here by averaging a large number of same-gender voices by using morphing. Voices more distant from their prototype are perceived as more distinctive and elicit greater neuronal activity in voice-sensitive cortex than closer voices-a phenomenon not merely explained by neuronal adaptation. Moreover, explicit manipulations of distance-to-mean by morphing voices toward (or away from) their prototype elicit reduced (or enhanced) neuronal activity. These results indicate that voice-sensitive cortex integrates relevant acoustical features into a complex representation referenced to idealized male and female voice prototypes. More generally, they shed light on remarkable similarities in cerebral representations of facial and vocal identity., (Copyright © 2013 Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF