1. Activated somatostatin interneurons orchestrate memory microcircuits.
- Author
-
Kim T, Choi DI, Choi JE, Lee H, Jung H, Kim J, Sung Y, Park H, Kim MJ, Han DH, Lee SH, and Kaang BK
- Subjects
- Mice, Animals, Memory physiology, Neurons physiology, Somatostatin metabolism, Interneurons physiology, Basolateral Nuclear Complex physiology
- Abstract
Despite recent advancements in identifying engram cells, our understanding of their regulatory and functional mechanisms remains in its infancy. To provide mechanistic insight into engram cell functioning, we introduced a novel local microcircuit labeling technique that enables the labeling of intraregional synaptic connections. Utilizing this approach, we discovered a unique population of somatostatin (SOM) interneurons in the mouse basolateral amygdala (BLA). These neurons are activated during fear memory formation and exhibit a preference for forming synapses with excitatory engram neurons. Post-activation, these SOM neurons displayed varying excitability based on fear memory retrieval. Furthermore, when we modulated these SOM neurons chemogenetically, we observed changes in the expression of fear-related behaviors, both in a fear-associated context and in a novel setting. Our findings suggest that these activated SOM interneurons play a pivotal role in modulating engram cell activity. They influence the expression of fear-related behaviors through a mechanism that is dependent on memory cues., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF