1. The ubiquitin ligase RFWD3 is required for translesion DNA synthesis.
- Author
-
Gallina I, Hendriks IA, Hoffmann S, Larsen NB, Johansen J, Colding-Christensen CS, Schubert L, Sellés-Baiget S, Fábián Z, Kühbacher U, Gao AO, Räschle M, Rasmussen S, Nielsen ML, Mailand N, and Duxin JP
- Subjects
- Animals, Cell Line, Tumor, Chromatin genetics, DNA-Directed DNA Polymerase metabolism, Female, Humans, Proliferating Cell Nuclear Antigen genetics, Substrate Specificity, Ubiquitin-Protein Ligases genetics, Ubiquitination, Xenopus laevis, Chromatin metabolism, DNA Breaks, Single-Stranded, DNA Repair, DNA Replication, Proliferating Cell Nuclear Antigen metabolism, Ubiquitin-Protein Ligases metabolism
- Abstract
Lesions on DNA uncouple DNA synthesis from the replisome, generating stretches of unreplicated single-stranded DNA (ssDNA) behind the replication fork. These ssDNA gaps need to be filled in to complete DNA duplication. Gap-filling synthesis involves either translesion DNA synthesis (TLS) or template switching (TS). Controlling these processes, ubiquitylated PCNA recruits many proteins that dictate pathway choice, but the enzymes regulating PCNA ubiquitylation in vertebrates remain poorly defined. Here we report that the E3 ubiquitin ligase RFWD3 promotes ubiquitylation of proteins on ssDNA. The absence of RFWD3 leads to a profound defect in recruitment of key repair and signaling factors to damaged chromatin. As a result, PCNA ubiquitylation is inhibited without RFWD3, and TLS across different DNA lesions is drastically impaired. We propose that RFWD3 is an essential coordinator of the response to ssDNA gaps, where it promotes ubiquitylation to drive recruitment of effectors of PCNA ubiquitylation and DNA damage bypass., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF