1. A genome-wide CRISPR-Cas9 screen identifies CENPJ as a host regulator of altered microtubule organization during Plasmodium liver infection.
- Author
-
Vijayan, Kamalakannan, Arang, Nadia, Wei, Ling, Morrison, Robert, Geiger, Rechel, Parks, K. Rachael, Lewis, Adam J., Mast, Fred D., Douglass, Alyse N., Kain, Heather S., Aitchison, John D., Johnson, Jarrod S., Aderem, Alan, and Kaushansky, Alexis
- Subjects
- *
PARASITES , *CRISPRS , *MEDICAL screening , *PLASMODIUM , *LIVER , *MICROTUBULES , *CENTROMERE , *MEROZOITES - Abstract
Prior to initiating symptomatic malaria, a single Plasmodium sporozoite infects a hepatocyte and develops into thousands of merozoites, in part by scavenging host resources, likely delivered by vesicles. Here, we demonstrate that host microtubules (MTs) dynamically reorganize around the developing liver stage (LS) parasite to facilitate vesicular transport to the parasite. Using a genome-wide CRISPR-Cas9 screen, we identified host regulators of cytoskeleton organization, vesicle trafficking, and ER/Golgi stress that regulate LS development. Foci of γ-tubulin localized to the parasite periphery; depletion of centromere protein J (CENPJ), a novel regulator identified in the screen, exacerbated this re-localization and increased infection. We demonstrate that the Golgi acts as a non-centrosomal MT organizing center (ncMTOC) by positioning γ-tubulin and stimulating MT nucleation at parasite periphery. Together, these data support a model where the Plasmodium LS recruits host Golgi to form MT-mediated conduits along which host organelles are recruited to PVM and support parasite development. [Display omitted] • A genome-wide CRISPR screen identifies host factors of Plasmodium liver infection • Plasmodium liver stages reorganize the host microtubule (MT) network • Host Golgi acts as non-centrosomal MT organizing complex (MTOC) at parasite periphery • Golgi-mediated MTOC repositioning regulates host vesicular trafficking to the parasite To identify host factors required for Plasmodium liver infection, Vijayan et al. conducted a genome-wide CRISPR knockout screen in hepatocytes. They demonstrate that liver stage parasites reorganize host microtubules by repositioning the microtubule organizing center at the parasite periphery in a Golgi-dependent fashion. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF