1. Myeloid cell subsets that express latency-associated peptide promote cancer growth by modulating T cells.
- Author
-
Gabriely G, Ma D, Siddiqui S, Sun L, Skillin NP, Abou-El-Hassan H, Moreira TG, Donnelly D, da Cunha AP, Fujiwara M, Walton LR, Patel A, Krishnan R, Levine SS, Healy BC, Rezende RM, Murugaiyan G, and Weiner HL
- Abstract
Myeloid suppressor cells promote tumor growth by a variety of mechanisms which are not fully characterized. We identified myeloid cells (MCs) expressing the latency-associated peptide (LAP) of TGF-β on their surface and LAP
Hi MCs that stimulate Foxp3+ Tregs while inhibiting effector T cell proliferation and function. Blocking TGF-β inhibits the tolerogenic ability of LAPHi MCs. Furthermore, adoptive transfer of LAPHi MCs promotes Treg accumulation and tumor growth in vivo . Conversely, anti-LAP antibody, which reduces LAPHi MCs, slows cancer progression. Single-cell RNA-Seq analysis on tumor-derived immune cells revealed LAPHi dominated cell subsets with distinct immunosuppressive signatures, including those with high levels of MHCII and PD-L1 genes. Analogous to mice, LAP is expressed on myeloid suppressor cells in humans, and these cells are increased in glioma patients. Thus, our results identify a previously unknown function by which LAPHi MCs promote tumor growth and offer therapeutic intervention to target these cells in cancer., Competing Interests: A patent for the use of anti-LAP antibodies for cancer treatment has been issued., (© 2021 The Authors.)- Published
- 2021
- Full Text
- View/download PDF