1. Coagulation factor X promotes resistance to androgen-deprivation therapy in prostate cancer.
- Author
-
Calì B, Troiani M, Bressan S, Attanasio G, Merler S, Moscarda V, Mosole S, Ricci E, Guo C, Yuan W, Gallagher L, Lundberg A, Bernett I, Figueiredo I, Arzola RA, Abreut EB, D'Ambrosio M, Bancaro N, Brina D, Zumerle S, Pasquini E, Maddalena M, Lai P, Colucci M, Pernigoni N, Rinaldi A, Minardi D, Morlacco A, Moro FD, Sabbadin M, Galuppini F, Fassan M, Rüschoff JH, Moch H, Rescigno P, Francini E, Saieva C, Modesti M, Theurillat JP, Gillessen S, Wilgenbus P, Graf C, Ruf W, de Bono J, and Alimonti A
- Subjects
- Male, Animals, Humans, Mice, Phenylthiohydantoin pharmacology, Phenylthiohydantoin therapeutic use, Factor Xa metabolism, Neutrophils metabolism, Receptor, PAR-2 metabolism, Receptor, PAR-2 genetics, Benzamides pharmacology, Cell Line, Tumor, Androgen Antagonists pharmacology, Androgen Antagonists therapeutic use, Nitriles pharmacology, Cell Proliferation, Prostatic Neoplasms, Castration-Resistant drug therapy, Prostatic Neoplasms, Castration-Resistant genetics, Prostatic Neoplasms, Castration-Resistant pathology, Prostatic Neoplasms, Castration-Resistant metabolism, Drug Resistance, Neoplasm, Tumor Microenvironment
- Abstract
Although hypercoagulability is commonly associated with malignancies, whether coagulation factors directly affect tumor cell proliferation remains unclear. Herein, by performing single-cell RNA sequencing (scRNA-seq) of the prostate tumor microenvironment (TME) of mouse models of castration-resistant prostate cancer (CRPC), we report that immunosuppressive neutrophils (PMN-MDSCs) are a key extra-hepatic source of coagulation factor X (FX). FX activation within the TME enhances androgen-independent tumor growth by activating the protease-activated receptor 2 (PAR2) and the phosphorylation of ERK1/2 in tumor cells. Genetic and pharmacological inhibition of factor Xa (FXa) antagonizes the oncogenic activity of PMN-MDSCs, reduces tumor progression, and synergizes with enzalutamide therapy. Intriguingly, F10
high PMN-MDSCs express the surface marker CD84 and CD84 ligation enhances F10 expression. Elevated levels of FX, CD84, and PAR2 in prostate tumors associate with worse survival in CRPC patients. This study provides evidence that FXa directly promotes cancer and highlights additional targets for PMN-MDSCs for cancer therapies., Competing Interests: Declaration of interests Authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF