1. Distribution in the unit tangent bundle of the geodesics of given type
- Author
-
Juan Souto, Viveka Erlandsson, University of Bristol [Bristol], University of Tromsø (UiT), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Applied Mathematics ,General Mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,010102 general mathematics ,Geometric Topology (math.GT) ,Dynamical Systems (math.DS) ,01 natural sciences ,Mathematics - Geometric Topology ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,0103 physical sciences ,FOS: Mathematics ,010307 mathematical physics ,Mathematics - Dynamical Systems ,[MATH]Mathematics [math] ,0101 mathematics - Abstract
Recall that two geodesics in a negatively curved surface $S$ are of the same type if their free homotopy classes differ by a homeomorphism of the surface. In this note we study the distribution in the unit tangent bundle of the geodesics of fixed type, proving that they are asymptotically equidistributed with respect to a certain measure $\mathfrak{m}^S$ on $T^1S$. We study a few properties of this measure, showing for example that it distinguishes between hyperbolic surfaces., 18 pages
- Published
- 2022