1. Amenable uniformly recurrent subgroups and lattice embeddings
- Author
-
Adrien Le Boudec, Centre National de la Recherche Scientifique (CNRS), Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon), Le Boudec, Adrien, and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Normal subgroup ,Class (set theory) ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Lattice ,General Mathematics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS] ,Group Theory (math.GR) ,[MATH] Mathematics [math] ,Lattice (discrete subgroup) ,01 natural sciences ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,Combinatorics ,20E08, 37B05, 22D05, 22E40 ,0103 physical sciences ,FOS: Mathematics ,Countable set ,Locally compact space ,[MATH]Mathematics [math] ,0101 mathematics ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Product (mathematics) ,010307 mathematical physics ,Mathematics - Group Theory - Abstract
We study lattice embeddings for the class of countable groups $\Gamma$ defined by the property that the largest amenable uniformly recurrent subgroup $A_\Gamma$ is continuous. When $A_\Gamma$ comes from an extremely proximal action and the envelope of $A_\Gamma$ is co-amenable in $\Gamma$, we obtain restrictions on the locally compact groups $G$ that contain a copy of $\Gamma$ as a lattice, notably regarding normal subgroups of $G$, product decompositions of $G$, and more generally dense mappings from $G$ to a product of locally compact groups., Comment: v1: 44 pages, preliminary version. v2: slightly modified version. v3: modified terminology, added paragraph 6.5.4. v4: Part of Section 6 has been extracted to arXiv:2001.08689
- Published
- 2020
- Full Text
- View/download PDF