1. Catalogue with visual morphological classification of 32,616 radio galaxies with optical hosts
- Author
-
Dorota Kozieł-Wierzbowska, Arti Goyal, and Natalia Żywucka
- Subjects
Physics ,Radio galaxy ,media_common.quotation_subject ,Visual examination ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Redshift ,Galaxy ,Spectral line ,Space and Planetary Science ,Sky ,Observatory ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
We present the catalogue of Radio sources associated with Optical Galaxies and having Unresolved or Extended morphologies I (ROGUE I). It was generated by cross-matching galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) as well as radio sources from the First Images of Radio Sky at Twenty Centimetre (FIRST) and the National Radio Astronomical Observatory VLA Sky Survey (NVSS) catalogues. We created the largest handmade catalogue of visually classified radio objects and associated with them optical host galaxies, containing 32,616 galaxies with a FIRST core within 3 arcsec of the optical position. All listed objects possess the good quality SDSS DR 7 spectra with the signal-to-noise ratio $>$10 and spectroscopic redshifts up to $z=0.6$. The radio morphology classification was performed by a visual examination of the FIRST and the NVSS contour maps overlaid on a DSS image, while an optical morphology classification was based on the 120 arcsec snapshot images from SDSS DR 7. The majority of radio galaxies in ROGUE I, i.e. $\sim$ 93%, are unresolved (compact or elongated), while the rest of them exhibit extended morphologies, such as Fanaroff-Riley (FR) type I, II, and hybrid, wide-angle tail, narrow-angle tail, head-tail sources, and sources with intermittent or reoriented jet activity, i.e. double-double, X-shaped, and Z-shaped. Most of FR IIs have low radio luminosities, comparable to the luminosities of FR Is. Moreover, due to visual check of all radio maps and optical images, we were able to discover or reclassify a number of radio objects as giant, double-double, X-shaped, and Z-shaped radio galaxies. The presented sample can serve as a database for training automatic methods of identification and classification of optical and radio galaxies., Proceedings paper under the IAU symposium "Nuclear Activity in Galaxies Across Cosmic Time", eds. M. Povic, P. Marziani, J. Masegosa, H. Netzer, S. H. Negu, and S. B. Tessema
- Published
- 2021