1. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca 2+ during excitation-contraction coupling in atrial myocytes.
- Author
-
Maxwell JT and Blatter LA
- Subjects
- Animals, Calcium Signaling physiology, Heart Ventricles metabolism, Male, Myocardial Contraction physiology, Rabbits, Sarcolemma metabolism, Sarcoplasmic Reticulum Calcium-Transporting ATPases metabolism, Calcium metabolism, Cytosol metabolism, Excitation Contraction Coupling physiology, Heart Atria metabolism, Myocytes, Cardiac metabolism, Ryanodine Receptor Calcium Release Channel metabolism, Sarcoplasmic Reticulum metabolism
- Abstract
Key Points: In atrial myocytes excitation-contraction coupling is strikingly different from ventricle because atrial myocytes lack a transverse tubule membrane system: Ca
2+ release starts in the cell periphery and propagates towards the cell centre by Ca2+ -induced Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+ store. The cytosolic Ca2+ sensitivity of the ryanodine receptor (RyRs) Ca2+ release channel is low and it is unclear how Ca2+ release can be activated in the interior of atrial cells. Simultaneous confocal imaging of cytosolic and intra-SR calcium revealed a transient elevation of store Ca2+ that we termed 'Ca2+ sensitization signal'. We propose a novel paradigm of atrial ECC that is based on tandem activation of the RyRs by cytosolic and luminal Ca2+ through a 'fire-diffuse-uptake-fire' (or FDUF) mechanism: Ca2+ uptake by SR Ca2+ pumps at the propagation front elevates Ca2+ inside the SR locally, leading to luminal RyR sensitization and lowering of the cytosolic Ca2+ activation threshold., Abstract: In atrial myocytes Ca2+ release during excitation-contraction coupling (ECC) is strikingly different from ventricular myocytes. In many species atrial myocytes lack a transverse tubule system, dividing the sarcoplasmic reticulum (SR) Ca2+ store into the peripheral subsarcolemmnal junctional (j-SR) and the much more abundant central non-junctional (nj-SR) SR. Action potential (AP)-induced Ca2+ entry activates Ca2+ -induced Ca2+ release (CICR) from j-SR ryanodine receptor (RyR) Ca2+ release channels. Peripheral elevation of [Ca2+ ]i initiates CICR from nj-SR and sustains propagation of CICR to the cell centre. Simultaneous confocal measurements of cytosolic ([Ca2+ ]i ; with the fluorescent Ca2+ indicator rhod-2) and intra-SR ([Ca2+ ]SR ; fluo-5N) Ca2+ in rabbit atrial myocytes revealed that Ca2+ release from j-SR resulted in a cytosolic Ca2+ transient of higher amplitude compared to release from nj-SR; however, the degree of depletion of j-SR [Ca2+ ]SR was smaller than nj-SR [Ca2+ ]SR . Similarly, Ca2+ signals from individual release sites of the j-SR showed a larger cytosolic amplitude (Ca2+ sparks) but smaller depletion (Ca2+ blinks) than release from nj-SR. During AP-induced Ca2+ release the rise of [Ca2+ ]i detected at individual release sites of the nj-SR preceded the depletion of [Ca2+ ]SR , and during this latency period a transient elevation of [Ca2+ ]SR occurred. We propose that Ca2+ release from nj-SR is activated by cytosolic and luminal Ca2+ (tandem RyR activation) via a novel 'fire-diffuse-uptake-fire' (FDUF) mechanism. This novel paradigm of atrial ECC predicts that Ca2+ uptake by sarco-endoplasmic reticulum Ca2+ -ATPase (SERCA) at the propagation front elevates local [Ca2+ ]SR , leading to luminal RyR sensitization and lowering of the activation threshold for cytosolic CICR., (© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.)- Published
- 2017
- Full Text
- View/download PDF