1. Recycling of archaeal biomass as a new strategy for extreme life in Dead Sea deep sediments
- Author
-
Daniel Ariztegui, Camille Thomas, Ingrid Antheaume, Vincent Grossi, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Forel and Department of Geology and Paleontology, University of Geneva [Switzerland], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université de Genève = University of Geneva (UNIGE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
- Subjects
bepress|Physical Sciences and Mathematics ,EarthArXiv|Physical Sciences and Mathematics|Chemistry|Organic Chemistry ,010504 meteorology & atmospheric sciences ,Earth science ,Heterotroph ,Biomass ,bepress|Physical Sciences and Mathematics|Earth Sciences ,engineering.material ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Extremophiles ,ddc:550 ,Extreme environment ,[CHIM]Chemical Sciences ,EarthArXiv|Physical Sciences and Mathematics|Chemistry ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Total organic carbon ,bepress|Physical Sciences and Mathematics|Chemistry ,biology ,Biosphere ,Geology ,biology.organism_classification ,Geomicrobiology ,EarthArXiv|Physical Sciences and Mathematics ,Dead Sea ,EarthArXiv|Physical Sciences and Mathematics|Earth Sciences|Biogeochemistry ,bepress|Physical Sciences and Mathematics|Chemistry|Organic Chemistry ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,[SDE]Environmental Sciences ,engineering ,Halite ,Sedimentary rock ,bepress|Physical Sciences and Mathematics|Earth Sciences|Biogeochemistry ,Archaea - Abstract
Archaea and Bacteria that inhabit the deep subsurface (known as the deep biosphere) play a prevalent role in the recycling of sedimentary organic carbon. In such environments, this process can occur over millions of years and requires microbial communities to cope with extremely limited sources of energy. Because of this scarcity, metabolic processes come at a high energetic cost, but the ways heterotrophic microbial communities develop to minimize energy expenses for a maximized yield remain unclear. Here, we report molecular biomarker evidence for the recycling of archaeal cell wall constituents in extreme evaporitic facies of Dead Sea deep sediments. Wax esters derived from the recombination of hydrolyzed products of archaeal membrane lipids were observed in gypsum and/or halite sedimentary deposits down to 243 m below the lake floor, implying the reutilization of archaeal necromass possibly by deep subsurface bacteria. By recycling the building blocks of putatively better-adapted archaea, heterotrophic bacteria may build up intracellular carbon stocks and mitigate osmotic stress in this energy-deprived environment. This mechanism illustrates a new pathway of carbon transformation in the subsurface and demonstrates how life can be maintained in extreme environments characterized by long-term isolation and minimal energetic resources.
- Published
- 2017
- Full Text
- View/download PDF