1. Quantifying the tumour vasculature environment from CD-31 immunohistochemistry images of breast cancer using deep learning based semantic segmentation
- Author
-
Tristan Whitmarsh, Wei Cope, Julia Carmona-Bozo, Roido Manavaki, Stephen-John Sammut, Ramona Woitek, Elena Provenzano, Emma L. Brown, Sarah E. Bohndiek, Ferdia A. Gallagher, Carlos Caldas, Fiona J. Gilbert, and Florian Markowetz
- Subjects
Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Tumour vascular density assessed from CD-31 immunohistochemistry (IHC) images has previously been shown to have prognostic value in breast cancer. Current methods to measure vascular density, however, are time-consuming, suffer from high inter-observer variability and are limited in describing the complex tumour vasculature morphometry. Methods We propose a method for automatically measuring a range of vascular parameters from CD-31 IHC images, which together provide a detailed description of the vasculature morphology. We first used a U-Net based convolutional neural network, trained and validated using 36 partially annotated whole slide images from 27 patients, to segment vessel structures and tumour regions from which the measurements are taken. The model also segments the vascular smooth muscle, benign epithelium, adipose tissue, stroma, lymphocyte clusters, nerves and CD-31 positive leukocytes, and we applied it to an additional 21 images from 15 patients. Using these segmentations, we investigated the relationship between the various tissue types and the vasculature and studied the relationship of various vascular parameters with clinical parameters. We also performed a 3D histology analysis on a separate tumour sample as a proof of principle, providing a more comprehensive visualization of vasculature morphology compared to the standard 2D cross-section of a tissue sample. Results Using two-way cross-validation, we show that vessels were accurately segmented, with Dice scores of 0.875 and 0.856, and were accurately identified, with F1 scores of 0.777 and 0.748. All vascular parameters exhibit strong ( $$r>0.7$$ r > 0.7 ) and significant (p
- Published
- 2025
- Full Text
- View/download PDF