1. Relationship between gait kinematics and walking energy expenditure during pregnancy in South African women
- Author
-
Zarko Krkeljas and Sarah Johanna Moss
- Subjects
Gait ,Pregnancy ,Energy expenditure ,Centre of gravity ,Kinematics ,Sports medicine ,RC1200-1245 - Abstract
Abstract Background Various musculoskeletal changes occurring during pregnancy may lead to the change in gait and contribute to the increase in walking energy expenditure. Previous research indicates that changes in gait mechanics may lead to the increase in mechanical work required during walking. However, there is little information to indicate if changes in gait mechanics during pregnancy have impact on active or total energy expenditure. Therefore, the primary aim of this study was to investigate the relationship between changes in gait kinematics and walking energy expenditure in pregnant women. Methods Thirty-five women (mean age = 27.5 ± 6.1 years) volunteered for the study during various stages of pregnancy (1st trimester average = 12.1 ± 2.2 weeks; 2nd trimester = 22.3 ± 2.6 weeks; 3rd trimester = 31.4 ± 2.6 weeks). 3D motion analysis was used to assess changes in kinematic parameters during walking at self-selected pace. Resting metabolic rate, and walking energy expenditure expressed in terms of rate and cost of O2 were analysed with portable metabolic analyser. Results Only medio-lateral deviation of centre of gravity (COGML) increased 13.6% between the 1st and 2nd, and 39.3% between 2nd and 3rd trimester (p ≤ 0.001). However, self-selected walking speed depicted strong significant positive linear relationship with net O2 rate (r = 0.70; p ≤ 0.001), and was strongly associated with the vertical excursion of the COG (r = 0.75, p ≤ 0.001). Conclusions Changes in gait mechanics during pregnancy may lead to an increase in walking energy expenditure. However, the consequent increase in walking energy cost may not be sufficient to offset the natural energy sparing mechanism.
- Published
- 2018
- Full Text
- View/download PDF