7 results on '"Rokhsar D"'
Search Results
2. Populus resequencing: towards genome-wide association studies
- Author
-
Tuskan Gerald, Slavov Gancho, DiFazio Steve, Muchero Wellington, Pryia Ranjan, Schackwitz Wendy, Martin Joel, Rokhsar Daniel, Sykes Robert, Davis Mark, Studer Michael, and Wyman Charles
- Subjects
Medicine ,Science - Published
- 2011
- Full Text
- View/download PDF
3. Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies
- Author
-
Jung Sook, Cestaro Alessandro, Troggio Michela, Main Dorrie, Zheng Ping, Cho Ilhyung, Folta Kevin M, Sosinski Bryon, Abbott Albert, Celton Jean-Marc, Arús Pere, Shulaev Vladimir, Verde Ignazio, Morgante Michele, Rokhsar Daniel, Velasco Riccardo, and Sargent Daniel
- Subjects
Rosaceae ,Comparative genomics ,Evolution ,Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. Results Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA) algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. Conclusion Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae.
- Published
- 2012
- Full Text
- View/download PDF
4. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy
- Author
-
Swaminathan Kankshita, Chae Won, Mitros Therese, Varala Kranthi, Xie Liang, Barling Adam, Glowacka Katarzyna, Hall Megan, Jezowski Stanislaw, Ming Ray, Hudson Matthew, Juvik John A, Rokhsar Daniel S, and Moose Stephen P
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Miscanthus (subtribe Saccharinae, tribe Andropogoneae, family Poaceae) is a genus of temperate perennial C4 grasses whose high biomass production makes it, along with its close relatives sugarcane and sorghum, attractive as a biofuel feedstock. The base chromosome number of Miscanthus (x = 19) is different from that of other Saccharinae and approximately twice that of the related Sorghum bicolor (x = 10), suggesting large-scale duplications may have occurred in recent ancestors of Miscanthus. Owing to the complexity of the Miscanthus genome and the complications of self-incompatibility, a complete genetic map with a high density of markers has not yet been developed. Results We used deep transcriptome sequencing (RNAseq) from two M. sinensis accessions to define 1536 single nucleotide variants (SNVs) for a GoldenGate™ genotyping array, and found that simple sequence repeat (SSR) markers defined in sugarcane are often informative in M. sinensis. A total of 658 SNP and 210 SSR markers were validated via segregation in a full sibling F1 mapping population. Using 221 progeny from this mapping population, we constructed a genetic map for M. sinensis that resolves into 19 linkage groups, the haploid chromosome number expected from cytological evidence. Comparative genomic analysis documents a genome-wide duplication in Miscanthus relative to Sorghum bicolor, with subsequent insertional fusion of a pair of chromosomes. The utility of the map is confirmed by the identification of two paralogous C4-pyruvate, phosphate dikinase (C4-PPDK) loci in Miscanthus, at positions syntenic to the single orthologous gene in Sorghum. Conclusions The genus Miscanthus experienced an ancestral tetraploidy and chromosome fusion prior to its diversification, but after its divergence from the closely related sugarcane clade. The recent timing of this tetraploidy complicates discovery and mapping of genetic markers for Miscanthus species, since alleles and fixed differences between paralogs are comparable. These difficulties can be overcome by careful analysis of segregation patterns in a mapping population and genotyping of doubled haploids. The genetic map for Miscanthus will be useful in biological discovery and breeding efforts to improve this emerging biofuel crop, and also provide a valuable resource for understanding genomic responses to tetraploidy and chromosome fusion.
- Published
- 2012
- Full Text
- View/download PDF
5. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes
- Author
-
Rokhsar Daniel S, Van Sluys Marie-Anne, Bowers John, Wiley Graham, Najar Fares, Chen Cuixia, Tang Haibao, Murray Jan E, Yu Qingyi, Macmil Simone, Roe Bruce, Wang Jianping, Hudson Matthew E, Moose Stephen P, Paterson Andrew H, and Ming Ray
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Sugarcane (Saccharum spp.) has become an increasingly important crop for its leading role in biofuel production. The high sugar content species S. officinarum is an octoploid without known diploid or tetraploid progenitors. Commercial sugarcane cultivars are hybrids between S. officinarum and wild species S. spontaneum with ploidy at ~12×. The complex autopolyploid sugarcane genome has not been characterized at the DNA sequence level. Results The microsynteny between sugarcane and sorghum was assessed by comparing 454 pyrosequences of 20 sugarcane bacterial artificial chromosomes (BACs) with sorghum sequences. These 20 BACs were selected by hybridization of 1961 single copy sorghum overgo probes to the sugarcane BAC library with one sugarcane BAC corresponding to each of the 20 sorghum chromosome arms. The genic regions of the sugarcane BACs shared an average of 95.2% sequence identity with sorghum, and the sorghum genome was used as a template to order sequence contigs covering 78.2% of the 20 BAC sequences. About 53.1% of the sugarcane BAC sequences are aligned with sorghum sequence. The unaligned regions contain non-coding and repetitive sequences. Within the aligned sequences, 209 genes were annotated in sugarcane and 202 in sorghum. Seventeen genes appeared to be sugarcane-specific and all validated by sugarcane ESTs, while 12 appeared sorghum-specific but only one validated by sorghum ESTs. Twelve of the 17 sugarcane-specific genes have no match in the non-redundant protein database in GenBank, perhaps encoding proteins for sugarcane-specific processes. The sorghum orthologous regions appeared to have expanded relative to sugarcane, mostly by the increase of retrotransposons. Conclusions The sugarcane and sorghum genomes are mostly collinear in the genic regions, and the sorghum genome can be used as a template for assembling much of the genic DNA of the autopolyploid sugarcane genome. The comparable gene density between sugarcane BACs and corresponding sorghum sequences defied the notion that polyploidy species might have faster pace of gene loss due to the redundancy of multiple alleles at each locus.
- Published
- 2010
- Full Text
- View/download PDF
6. Early evolution of the LIM homeobox gene family
- Author
-
Degnan Bernard M, Chapman Jarrod, Mohanty Kareshma, Lu Daniel R, Larroux Claire, Srivastava Mansi, and Rokhsar Daniel S
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Abstract Background LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural territories in larval and juvenile polyp stages. This pattern is consistent with a possible role in patterning the Nematostella nervous system. We propose a scenario in which Lhx genes play a homologous role in neural patterning across eumetazoans.
- Published
- 2010
- Full Text
- View/download PDF
7. Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis
- Author
-
Grammer Timothy C, Khokha Mustafa K, Hellsten Uffe, Harland Richard M, Richardson Paul, and Rokhsar Daniel S
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Abstract Background Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization ~40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication. Results We identified 2218 gene triplets in which a single gene in X. tropicalis corresponds to precisely two co-orthologous genes in X. laevis – the largest such collection published from any duplication event in animals. Analysis of these triplets reveals accelerated evolution or relaxation of constraint in the peptides of the X. laevis pairs compared with the orthologous sequences in X. tropicalis and other vertebrates. In contrast, single-copy X. laevis genes do not show this acceleration. Duplicated genes can differ substantially in expression levels and patterns. We find no significant difference in gene content in the duplicated set, versus the single-copy set based on molecular and biological function ontologies. Conclusion These results support a scenario in which duplicate genes are retained through a process of subfunctionalization and/or relaxation of constraint on both copies of an ancestral gene.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.