1. Intestinal microbiome-mediated resistance against vibriosis for Cynoglossus semilaevis
- Author
-
Qian Zhou, Xue Zhu, Yangzhen Li, Pengshuo Yang, Shengpeng Wang, Kang Ning, and Songlin Chen
- Subjects
Microbial ecology ,QR100-130 - Abstract
Abstract Background Infectious diseases have caused huge economic loss and food security issues in fish aquaculture. Current management and breeding strategies heavily rely on the knowledge of regulative mechanisms underlying disease resistance. Though the intestinal microbial community was linked with disease infection, there is little knowledge about the roles of intestinal microbes in fish disease resistance. Cynoglossus semilaevis is an economically important and widely cultivated flatfish species in China. However, it suffers from outbreaks of vibriosis, which results in huge mortalities and economic loss. Results Here, we used C. semilaevis as a research model to investigate the host-microbiome interactions in regulating vibriosis resistance. The resistance to vibriosis was reflected in intestinal microbiome on both taxonomic and functional levels. Such differences also influenced the host gene expressions in the resistant family. Moreover, the intestinal microbiome might control the host immunological homeostasis and inflammation to enhance vibriosis resistance through the microbe-intestine-immunity axis. For example, Phaeobacter regulated its hdhA gene and host cyp27a1 gene up-expressed in bile acid biosynthesis pathways, but regulated its trxA gene and host akt gene down-expressed in proinflammatory cytokines biosynthesis pathways, to reduce inflammation and resist disease infection in the resistant family. Furthermore, the combination of intestinal microbes and host genes as biomarkers could accurately differentiate resistant family from susceptible family. Conclusion Our study uncovered the regulatory patterns of the microbe-intestine-immunity axis that may contribute to vibriosis resistance in C. semilaevis. These findings could facilitate the disease control and selective breeding of superior germplasm with high disease resistance in fish aquaculture. Video Abstract
- Published
- 2022
- Full Text
- View/download PDF