1. A novel human tau knock-in mouse model reveals interaction of Abeta and human tau under progressing cerebral amyloidosis in 5xFAD mice
- Author
-
Susan Barendrecht, An Schreurs, Stefanie Geissler, Victor Sabanov, Victoria Ilse, Vera Rieckmann, Rico Eichentopf, Anja Künemund, Benjamin Hietel, Sebastian Wussow, Katrin Hoffmann, Kerstin Körber-Ferl, Ravi Pandey, Gregory W. Carter, Hans-Ulrich Demuth, Max Holzer, Steffen Roßner, Stephan Schilling, Christoph Preuss, Detlef Balschun, and Holger Cynis
- Subjects
Alzheimer’s disease ,Animal model ,Tau ,Knock-in ,Amyloid ,Gene expression ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Abstract Background Hyperphosphorylation and intraneuronal aggregation of the microtubule-associated protein tau is a major pathological hallmark of Alzheimer’s disease (AD) brain. Of special interest is the effect of cerebral amyloid beta deposition, the second main hallmark of AD, on human tau pathology. Therefore, studying the influence of cerebral amyloidosis on human tau in a novel human tau knock-in (htau-KI) mouse model could help to reveal new details on their interplay. Methods We studied the effects of a novel human htau-KI under fast-progressing amyloidosis in 5xFAD mice in terms of correlation of gene expression data with human brain regions, development of Alzheimer’s-like pathology, synaptic transmission, and behavior. Results The main findings are an interaction of human beta-amyloid and human tau in crossbred 5xFADxhtau-KI observed at transcriptional level and corroborated by electrophysiology and histopathology. The comparison of gene expression data of the 5xFADxhtau-KI mouse model to 5xFAD, control mice and to human AD patients revealed conspicuous changes in pathways related to mitochondria biology, extracellular matrix, and immune function. These changes were accompanied by plaque-associated MC1-positive pathological tau that required the htau-KI background. LTP deficits were noted in 5xFAD and htau-KI mice in contrast to signs of rescue in 5xFADxhtau-KI mice. Increased frequencies of miniature EPSCs and miniature IPSCs indicated an upregulated presynaptic function in 5xFADxhtau-KI. Conclusion In summary, the multiple interactions observed between knocked-in human tau and the 5xFAD-driven progressing amyloidosis have important implications for future model development in AD.
- Published
- 2023
- Full Text
- View/download PDF