4 results on '"Doaa Bahaa Eldin Darwish"'
Search Results
2. Ameliorating arsenic and PVC microplastic stress in barley (Hordeum vulgare L.) using copper oxide nanoparticles: an environmental bioremediation approach
- Author
-
Haifa Abdulaziz Sakit Alhaithloul, Suliman Mohammed Suliman Alghanem, Ibtisam Mohammed Alsudays, Zahid Khorshid Abbas, Siham M. AL-Balawi, Baber Ali, Tabarak Malik, Sadia Javed, Shafaqat Ali, Sezai Ercisli, and Doaa Bahaa Eldin Darwish
- Subjects
Cellular component ,Gene expression ,Heavy metal toxicity ,Microplastic ,Nanotechnology ,Proline metabolism ,Botany ,QK1-989 - Abstract
Abstract The present study investigates the impact of varying concentrations of PVC microplastics (PVC–MPs) – specifically 0 (no PVC–MPs), 2, and 4 mg L− 1 –alongside different arsenic (As) levels of 0 (no As), 150, and 300 mg kg− 1 in the soil, with the concurrent application of copper oxide–nanoparticles (CuO–NPs) at 0 (no CuO –NPs), 25 and 50 µg mL− 1 to barley (Hordeum vulgare L.) plants. This research primarily aims to assess plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, as well as the response of various antioxidants (both enzymatic and non-enzymatic) and their relevant genes expression, proline metabolism, the AsA–GSH cycle, and cellular fractionation within the plants. The findings showed that increased levels of PVC–MPs and As stress in the soil significantly reduced plant growth and biomass, photosynthetic pigments, and gas exchange characteristics. Additionally, PVC–MPs and As stress increased oxidative stress in the roots and shoots, as evidenced by elevated levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL), which in turn stimulated the production of various enzymatic and non-enzymatic antioxidants, gene expression, and sugar content. Furthermore, a notable increase in proline metabolism, the AsA–GSH cycle, and cellular pigmentation was observed. Conversely, the application of CuO–NPs resulted in a substantial improvement in plant growth and biomass, gas exchange characteristics, and the activity of enzymatic and non-enzymatic antioxidants, along with a reduction in oxidative stress. Additionally, CuO–NPs enhanced cellular fractionation while decreasing proline metabolism and the AsA-GSH cycle in H. vulgare plants. These outcomes provide new insights into sustainable agricultural practices and offer significant potential in addressing the critical challenges of heavy metal contamination in agricultural soils.
- Published
- 2024
- Full Text
- View/download PDF
3. Induced genetic diversity through mutagenesis in wheat gene pool and significant use of SCoT markers to underpin key agronomic traits
- Author
-
Ahmed Ali Abdelhameed, Mohammed Ali, Doaa Bahaa Eldin Darwish, Manal Abdullah AlShaqhaa, Dalia Abdel-Fattah H. Selim, Aziza Nagah, and Muhammad Zayed
- Subjects
Wheat (Triticum aestivum L.) ,Chemical mutagenesis ,Genetic diversity ,Gene pool ,Sodium azide ,Hydrazine hydrate ,Botany ,QK1-989 - Abstract
Abstract Background This research explores the efficacy of mutagenesis, specifically using sodium azide (SA) and hydrazine hydrate (HZ) treatments, to introduce genetic diversity and enhance traits in three wheat (Triticum aestivum L.) genotypes. The experiment entails subjecting the seeds to different doses of SA and HZ and cultivating them in the field for two consecutive generations: M1 (first generation) and M2 (second generation). We then employed selective breeding techniques with Start Codon Targeted (SCoT) markers to select traits within the wheat gene pool. Also, the correlation between SCoT markers and specific agronomic traits provides insights into the genetic mechanisms underlying mutagenesis-induced changes in wheat. Results In the study, eleven genotypes were derived from parent varieties Sids1, Sids12, and Giza 168, and eight mutant genotypes were selected from the M1 generation and further cultivated to establish the M2 generation. The results revealed that various morphological and agronomical characteristics, such as plant height, spikes per plant, spike length, spikelet per spike, grains per spikelet, and 100-grain weight, showed increases in different genotypes from M1 to M2. SCoT markers were employed to assess genetic diversity among the eleven genotypes. The bioinformatics analysis identified a correlation between SCoT markers and the transcription factors ABSCISIC ACID INSENSITIVE3 (ABI3) and VIVIPAROUS1 (VP1), crucial for plant development, growth, and stress adaptation. A comprehensive examination of genetic distance and the function identification of gene-associated SCoT markers may provide valuable insights into the mechanisms by which SA and HZ act as mutagens, enhancing wheat agronomic qualities. Conclusions This study demonstrates the effective use of SA and HZ treatments to induce gene diversity through mutagenesis in the wheat gene pool, resulting in the enhancement of agronomic traits, as revealed by SCoT markers. The significant improvements in morphological and agronomical characteristics highlight the potential of mutagenesis techniques for crop improvement. These findings offer valuable information for breeders to develop effective breeding programs to enhance wheat quality and resilience through increased genetic diversity.
- Published
- 2024
- Full Text
- View/download PDF
4. Constitutive overexpression of GsIMaT2 gene from wild soybean enhances rhizobia interaction and increase nodulation in soybean (Glycine max)
- Author
-
Doaa Bahaa Eldin Darwish, Mohammed Ali, Aisha M. Abdelkawy, Muhammad Zayed, Marfat Alatawy, and Aziza Nagah
- Subjects
Glycine soja ,Glycine max ,Root growth and nodulation ,Isoflavone ,Strigolactone ,GsIMaT2 gene ,Botany ,QK1-989 - Abstract
Abstract Background Since the root nodules formation is regulated by specific and complex interactions of legume and rhizobial genes, there are still too many questions to be answered about the role of the genes involved in the regulation of the nodulation signaling pathway. Results The genetic and biological roles of the isoflavone-7-O-beta-glucoside 6″-O-malonyltransferase gene GsIMaT2 from wild soybean (Glycine soja) in the regulation of nodule and root growth in soybean (Glycine max) were examined in this work. The effect of overexpressing GsIMaT2 from G. soja on the soybean nodulation signaling system and strigolactone production was investigated. We discovered that the GsIMaT2 increased nodule numbers, fresh nodule weight, root weight, and root length by boosting strigolactone formation. Furthermore, we examined the isoflavone concentration of transgenic G. max hairy roots 10 and 20 days after rhizobial inoculation. Malonyldaidzin, malonylgenistin, daidzein, and glycitein levels were considerably higher in GsMaT2-OE hairy roots after 10- and 20-days of Bradyrhizobium japonicum infection compared to the control. These findings suggest that isoflavones and their biosynthetic genes play unique functions in the nodulation signaling system in G. max. Conclusions Finally, our results indicate the potential effects of the GsIMaT2 gene on soybean root growth and nodulation. This study provides novel insights for understanding the epistatic relationship between isoflavones, root development, and nodulation in soybean. Highlights * Cloning and Characterization of 7-O-beta-glucoside 6″-O-malonyltransferase (GsIMaT2) gene from wild soybean (G. soja). * The role of GsIMaT2 gene in the regulation of root nodule development. *Overexpression of GsMaT2 gene increases the accumulation of isoflavonoid in transgenic soybean hairy roots. * This gene could be used for metabolic engineering of useful isoflavonoid production.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.