1. Association between radiographic hand osteoarthritis and bone microarchitecture in a population-based sample
- Author
-
Canchen Ma, Dawn Aitken, Feitong Wu, Kathryn Squibb, Flavia Cicuttini, and Graeme Jones
- Subjects
Bone size ,Bone mineral density ,HRpQCT ,Radiography ,Hand osteoarthritis ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background Subchondral bone plays an important role in the pathogenesis of radiographic osteoarthritis (OA). However, the bony changes that occur in hand OA (HOA) are much less understood. This study aimed to describe the association between radiographic HOA and high-resolution peripheral quantitative computed tomography (HRpQCT) measures of the hand and radius in a population-based sample. Methods A total of 201 participants (mean age 72, 46% female) from the Tasmanian Older Adult Cohort (TASOAC) study underwent HRpQCT assessment of the 2nd distal and proximal interphalangeal (DIP, PIP), 1st carpometacarpal (CMC) joint, and distal radius. Radiographic HOA was assessed at the 2nd DIP, PIP joints, and the 1st CMC joint using the OARSI atlas. Results Proximal osteophyte and joint space narrowing (JSN) scores were consistently more strongly associated with HRpQCT measures compared to the distal site with positive associations for indices of bone size (total and trabecular bone area and cortical perimeter but inconsistent for cortical area) and negative associations for volumetric bone mineral density (vBMD). There was a decrease in trabecular number and bone volume fraction with increasing osteophyte and JSN score as well as an increase in trabecular separation and inhomogeneity. Osteophyte and JSN scores in the hand were not associated with HRpQCT measures at the distal radius. Conclusions This hypothesis generating data suggests that bone size and trabecular disorganization increase with both osteophyte formation and JSN (proximal more than distal), while local vBMD decreases. This process appears to be primarily at the site of pathology rather than nearby unaffected bone.
- Published
- 2022
- Full Text
- View/download PDF