1. The in vitro effect of nanoliposomal amphotericin B against two clinically important dermatophytes.
- Author
-
Ahmad Nasrollahi S, Fattahi A, Naeimifar A, Lotfali E, Firooz A, Khamesipoor A, Skandari SE, and Miramin Mohammadi A
- Subjects
- Antifungal Agents pharmacology, Humans, Itraconazole pharmacology, Microbial Sensitivity Tests, Terbinafine pharmacology, Amphotericin B pharmacology, Arthrodermataceae
- Abstract
Aims: The present study aimed to investigate the antifungal activity of amphotericin B-loaded nanoliposomes against Trichophyton interdigitale and Trichophyton rubrum. Moreover, it was attempted to assess the obtained resistance in vitro., Methods: In total, 29 archived clinical strains, namely, T. interdigitale (n = 16) and T. rubrum (n = 13), were included in this study. These strains were determined using a previous ITS1-ITS2 region sequence. Moreover, a liposomal formulation of amphotericin B was formulated by a thin-film hydration method. Particle size, polydispersity index (PdI), and zeta potential (ZP) were measured by a Zetasizer. Furthermore, physicochemical properties, such as appearance, aggregation of particles, particle size, PdI, and ZP, were determined at 0-, 1-, and 3-month intervals. A scanning electron microscope (SEM) was also used to examine nanoparticles structure. The minimum inhibitory concentration (MIC) of amphotericin B-loaded nanoliposomes, itraconazole, efinaconazole, terbinafine, and ciclopirox was determined according to the protocol of the broth microdilution method of CLSI M38-A2. The morphological changes of T. interdigitale and T. rubrum strains exposed to the amphotericin B-loaded nanoliposomes were observed using SEM., Results: The amphotericin B-loaded nanoliposomes displayed a lower MIC compared to those of the amphotericin B and liposomes when used separately. Based on the results, amphotericin B-loaded nanoliposomes induced no drug resistance in any of the tested strains., Conclusion: Accordingly, amphotericin B-loaded nanoliposomes can be a potent antifungal for the topical treatment of onychomycosis. There was no in vitro evidence regarding the resistance of the tested strains to amphotericin B-loaded nanoliposomes. This reflects that amphotericin B-loaded nanoliposomes have a low probability to induce drug resistance in dermatophyte species., (© 2021 the International Society of Dermatology.)
- Published
- 2022
- Full Text
- View/download PDF