1. Somatic variants as a cause of drug-resistant epilepsy including mesial temporal lobe epilepsy with hippocampal sclerosis.
- Author
-
Carton RJ, Doyle MG, Kearney H, Steward CA, Lench NJ, Rogers A, Heinzen EL, McDonald S, Fay J, Lacey A, Beausang A, Cryan J, Brett F, El-Naggar H, Widdess-Walsh P, Costello D, Kilbride R, Doherty CP, Sweeney KJ, O'Brien DF, Henshall DC, Delanty N, Cavalleri GL, and Benson KA
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Female, Humans, Male, Middle Aged, Young Adult, Filamins genetics, Genetic Variation, Malformations of Cortical Development genetics, Malformations of Cortical Development complications, Malformations of Cortical Development pathology, Drug Resistant Epilepsy genetics, Drug Resistant Epilepsy etiology, Drug Resistant Epilepsy pathology, Epilepsy, Temporal Lobe genetics, Epilepsy, Temporal Lobe pathology, Hippocampal Sclerosis genetics, Hippocampal Sclerosis pathology
- Abstract
Objective: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy., Methods: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing., Results: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development., Significance: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes., (© 2024 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.)
- Published
- 2024
- Full Text
- View/download PDF