6 results on '"McMeans BC"'
Search Results
2. Winter in water: differential responses and the maintenance of biodiversity.
- Author
-
McMeans BC, McCann KS, Guzzo MM, Bartley TJ, Bieg C, Blanchfield PJ, Fernandes T, Giacomini HC, Middel T, Rennie MD, Ridgway MS, and Shuter BJ
- Subjects
- Animals, Ice Cover, Lakes, Seasons, Biodiversity, Water
- Abstract
The ecological consequences of winter in freshwater systems are an understudied but rapidly emerging research area. Here, we argue that winter periods of reduced temperature and light (and potentially oxygen and resources) could play an underappreciated role in mediating the coexistence of species. This may be especially true for temperate and subarctic lakes, where seasonal changes in the thermal environment might fundamentally structure species interactions. With climate change already shortening ice-covered periods on temperate and polar lakes, consideration of how winter conditions shape biotic interactions is urgently needed. Using freshwater fishes in northern temperate lakes as a case study, we demonstrate how physiological trait differences (e.g. thermal preference, light sensitivity) drive differential behavioural responses to winter among competing species. Specifically, some species have a higher capacity for winter activity than others. Existing and new theory is presented to argue that such differential responses to winter can promote species coexistence. Importantly, if winter is a driver of niche differences that weaken competition between, relative to within species, then shrinking winter periods could threaten coexistence by tipping the scales in favour of certain sets of species over others., (© 2020 John Wiley & Sons Ltd/CNRS.)
- Published
- 2020
- Full Text
- View/download PDF
3. Rescaling the trophic structure of marine food webs.
- Author
-
Hussey NE, Macneil MA, McMeans BC, Olin JA, Dudley SF, Cliff G, Wintner SP, Fennessy ST, and Fisk AT
- Subjects
- Animals, Arctic Regions, Nitrogen Isotopes, Oceans and Seas, South Africa, Fishes, Food Chain, Models, Biological
- Abstract
Measures of trophic position (TP) are critical for understanding food web interactions and human-mediated ecosystem disturbance. Nitrogen stable isotopes (δ(15) N) provide a powerful tool to estimate TP but are limited by a pragmatic assumption that isotope discrimination is constant (change in δ(15) N between predator and prey, Δ(15) N = 3.4‰), resulting in an additive framework that omits known Δ(15) N variation. Through meta-analysis, we determine narrowing discrimination from an empirical linear relationship between experimental Δ(15) N and δ(15) N values of prey consumed. The resulting scaled Δ(15) N framework estimated reliable TPs of zooplanktivores to tertiary piscivores congruent with known feeding relationships that radically alters the conventional structure of marine food webs. Apex predator TP estimates were markedly higher than currently assumed by whole-ecosystem models, indicating perceived food webs have been truncated and species-interactions over simplified. The scaled Δ(15) N framework will greatly improve the accuracy of trophic estimates widely used in ecosystem-based management., (© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.)
- Published
- 2014
- Full Text
- View/download PDF
4. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions.
- Author
-
Hussey NE, MacNeil MA, Olin JA, McMeans BC, Kinney MJ, Chapman DD, and Fisk AT
- Subjects
- Animal Migration, Animals, Diet, Ecosystem, Specimen Handling, Ecology methods, Elasmobranchii physiology, Isotopes analysis
- Abstract
Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays., (© 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.)
- Published
- 2012
- Full Text
- View/download PDF
5. Biology of the Greenland shark Somniosus microcephalus.
- Author
-
MacNeil MA, McMeans BC, Hussey NE, Vecsei P, Svavarsson J, Kovacs KM, Lydersen C, Treble MA, Skomal GB, Ramsey M, and Fisk AT
- Subjects
- Animals, Arctic Regions, Atlantic Ocean, Conservation of Natural Resources, Fisheries, Food Chain, Greenland, Sharks growth & development, Sharks physiology
- Abstract
Greenland shark Somniosus microcephalus is a potentially important yet poorly studied cold-water species inhabiting the North Atlantic and Arctic Oceans. Broad-scale changes in the Arctic ecosystem as a consequence of climate change have led to increased attention on trophic dynamics and the role of potential apex predators such as S. microcephalus in the structure of Arctic marine food webs. Although Nordic and Inuit populations have caught S. microcephalus for centuries, the species is of limited commercial interest among modern industrial fisheries. Here, the limited historical information available on S. microcephalus occurrence and ecology is reviewed and new catch, biological and life-history information from the Arctic and North Atlantic Ocean region is provided. Given the considerable by-catch rates in high North Atlantic Ocean latitudes it is suggested that S. microcephalus is an abundant predator that plays an important, yet unrecognized, role in Arctic marine ecosystems. Slow growth and large pup sizes, however, may make S. microcephalus vulnerable to increased fishing pressure in a warming Arctic environment., (© 2012 Australian Institute of Marine Sciences. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.)
- Published
- 2012
- Full Text
- View/download PDF
6. Stable-isotope comparisons between embryos and mothers of a placentatrophic shark species.
- Author
-
McMeans BC, Olin JA, and Benz GW
- Subjects
- Animal Nutritional Physiological Phenomena, Animals, Carbon Isotopes analysis, Cartilage chemistry, Female, Muscles chemistry, Nitrogen Isotopes analysis, Sharks embryology
- Abstract
Stable nitrogen (delta(15)N) and carbon (delta(13)C) isotopes of Atlantic sharpnose shark Rhizoprionodon terraenovae embryos and mothers were analysed. Embryos were generally enriched in (15)N in all studied tissue relative to their mothers' tissue, with mean differences between mother and embryo delta(15)N (i.e. Deltadelta(15)N) being 1.4 per thousand for muscle, 1.7 per thousand for liver and 1.1 per thousand for cartilage. Embryo muscle and liver were enriched in (13)C (both Deltadelta(13)C means = 1.5 per thousand) and embryo cartilage was depleted (Deltadelta(13)C mean = -1.01 per thousand) relative to corresponding maternal tissues. While differences in delta(15)N and delta(13)C between mothers and their embryos were significant, muscle delta(15)N values indicated embryos to be within the range of values expected if they occupied a similar trophic position as their respective mothers. Positive linear relationships existed between embryo total length (L(T)) and Deltadelta(15)N for muscle and liver and embryo L(T) and Deltadelta(13)C for muscle, with those associations possibly resulting from physiological differences between smaller and larger embryos or differences associated with the known embryonic nutrition shift (yolk feeding to placental feeding) that occurs during the gestation of this placentatrophic species. Together these results suggest that at birth, the delta(15)N and delta(13)C values of R. terraenovae are likely higher than somewhat older neonates whose postpartum feeding habits have restructured their isotope profiles to reflect their postembryonic diet.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.