1. A circumpolar study unveils a positive non-linear effect of temperature on arctic arthropod availability that may reduce the risk of warming-induced trophic mismatch for breeding shorebirds.
- Author
-
Chagnon-Lafortune A, Duchesne É, Legagneux P, McKinnon L, Reneerkens J, Casajus N, Abraham KF, Bolduc É, Brown GS, Brown SC, Gates HR, Gilg O, Giroux MA, Gurney K, Kendall S, Kwon E, Lanctot RB, Lank DB, Lecomte N, Leung M, Liebezeit JR, Morrison RIG, Nol E, Payer DC, Reid D, Ruthrauff D, Saalfeld ST, Sandercock BK, Smith PA, Schmidt NM, Tulp I, Ward DH, Høye TT, Berteaux D, and Bêty J
- Subjects
- Animals, Arctic Regions, Climate Change, Food Chain, Charadriiformes physiology, Animal Migration, Arthropods physiology, Seasons, Temperature, Biomass
- Abstract
Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch., (© 2024 His Majesty the King in Right of Canada and The Authors. Global Change Biology published by John Wiley & Sons Ltd. Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
- Published
- 2024
- Full Text
- View/download PDF